在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.
(1)求线段AD的长;
(2)若EF⊥AB,当点E在线段AB上移动时,
①求y与x的函数关系式(写出自变量x的取值范围)
②当x取何值时,y有最大值?并求其最大值;
(3)若F在直角边BC上(点F与B、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.
考点分析:
相关试题推荐
为了进一步变化城市.某城市计划改建人民广场中心.一块边长为8米的正方形花圃,如图,AE=AF,点G、H、I分别是EE、CE、CF的中点,计划在△GHI内放置“奋进”大型塑像,在阴影部分种植荷花,其余部分种植茉莉.原来种植1平方米荷花和1平方米茉莉的总成本为200元,受季节和气候的影响,经核算荷花的种植成本提高了2成,茉莉的种植成本降低了1成,使每平方米荷花和每平方米茉莉的种植总成本提高了8%.
(1)试求出实际1平方米荷花和1平方米茉莉种植成本分别是多少元?
(2)若此花圃实际种植总成本为7956元,请求出AE的长度.
查看答案
如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.
(1)求y关于x的函数关系式;
(2)若m=8,求x为何值时,y的值最大,最大值是多少?
(3)若y=
,要使△DEF为等腰三角形,m的值应为多少?
查看答案
在完全相同的五张卡片上分别写上1,2,3,4,5五个数字后,装入一个不透明的口袋内搅匀.
(1)从口袋内任取一张卡片,卡片上数字是偶数的概率是______;
(2)从口袋内任取一张卡片记下数字后放回,搅匀后再从中任取一张,求两张卡片上数字和为5的概率.
查看答案
如图,一艘船以每小时40海里的速度向西南方向航行,在A处观测灯塔M在船的南偏西75°的方向,航行9分钟后到达B处,这时灯塔M恰好在船的正西方向.已知距离此灯塔9海里以内的海区有暗礁,这艘船继续沿西南方向航行是否有触礁的危险?为什么?(参考数据:
,
)
查看答案
某同学进行社会调查,随机抽查了某个地区的20个家庭的年收人情况,并绘制了统计图.请你根据统计图给出的信息回答:
(1)填写完成下表:这20个家庭的年平均收入为______万元.
年收入(万元) | 0.6 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 9.7 |
户数 | | | | | | | | |
(2)样本中的中位数、众数分别是多少?
(3)在平均数、众数两数中,哪个更能反映这个地区家庭的年收入水平.为什么?
查看答案