如图1所示,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.
(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,请指出△OEF为等腰三角形时动点E,F的位置;若不能,请说明理由;
(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,写出x的取值范围;
(3)在满足(2)中的条件时,若以O为圆心的圆与AB相切(如图2),试探究直线EF与⊙O的位置关系,并证明你的结论.
考点分析:
相关试题推荐
(1)观察与猜想:已知当0°<α<60°时,下列关系式有且只有一个正确,正确的是______(填代号)
A.2sin(30°+α)=sinα+
B.2sin(30°+α)=2sinα+
C.2sin(30°+α)=
sinα+cosα.
(2)探究与证明:如图1,△ABC中,∠A=α,∠B=30°,AC=1,请利用图1证明(1)中你猜想的结论;
(3)应用新知识解决问题:
两块分别含有45°和30°的直角三角板如图2方式摆放在同一平面内,BD=8
,求S
△ABC.
查看答案
某工厂计划为灾区学校生产甲、乙两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套甲型桌椅(一桌两椅)需木料0.5m
3,一套乙型桌椅(一桌三椅)需木料0.7m
3,工厂现有库存木料302m
3.
(1)有多少种生产方案?
(2)现要把生产的全部桌椅运往灾区,已知每套甲型桌椅的生产成本为100元,运费2元;每套乙型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产甲型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)
查看答案
为了解体育大课间活动情况,某中学抽查了初四50名女同学1分钟跳绳的成绩,根据测试评分标准,将她们的成绩进行统计后分为A,B,C,D四个等级,并绘制成下面的扇形统计图和频数分布表(注:6~7的意义为大于等于6分且小于7分,其余类似)(如图).
频数分布表
等级 | 分值 | 跳绳(次/1分钟) | 频数 |
A | 9~10 | 150~170 | 4 |
8~9 | 140~150 | 11 |
B | 7~8 | 130~140 | 17 |
6~7 | 120~130 | m |
C | 5~6 | 110~120 | |
4~5 | 90~110 | n |
D | 3~4 | 70~90 | 2 |
0~3 | 0~70 | |
(1)等级A所在扇形圆心角度数是______度;
(2)求m,n的值;
(3)已知初四女生共300人,得分在6分以上(含6分)为及格,请你估计一下有多少女生1分钟跳绳成绩不及格.
查看答案
某商场购进160台空调准备在一定时间内销售,按计划销售40台后商场开展促销活动,每天比原计划多售出4台,结果提前5天完成销售任务,原计划每天销售多少台?
查看答案
先化简,再求值:
,其中a=tan60°-4sin30°.
查看答案