满分5 > 初中数学试题 >

情境观察 将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1...

情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是______,∠CAC′=______°.manfen5.com 满分网
manfen5.com 满分网
问题探究manfen5.com 满分网
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.
①观察图形即可发现△ABC≌△AC′D,即可解题; ②易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,FQ=AG,即可解题; ③过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.根据全等三角形的判定和性质即可解题. 【解析】 ①观察图形即可发现△ABC≌△AC′D,即BC=AD,∠C′AD=∠ACB, ∴∠CAC′=180°-∠C′AD-∠CAB=90°; 故答案为:AD,90. ②∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°, ∴∠AFQ=∠CAG,同理∠ACG=∠FAQ, 又∵AF=AC, ∴△AFQ≌△CAG, ∴FQ=AG, 同理EP=AG, ∴FQ=EP. ③HE=HF. 理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q. ∵四边形ABME是矩形, ∴∠BAE=90°, ∴∠BAG+∠EAP=90°, 又AG⊥BC, ∴∠BAG+∠ABG=90°, ∴∠ABG=∠EAP. ∵∠AGB=∠EPA=90°, ∴△ABG∽△EAP, ∴AG:EP=AB:EA. 同理△ACG∽△FAQ, ∴AG:FQ=AC:FA. ∵AB=k•AE,AC=k•AF, ∴AB:EA=AC:FA=k, ∴AG:EP=AG:FQ. ∴EP=FQ. 又∵∠EHP=∠FHQ,∠EPH=∠FQH, ∴Rt△EPH≌Rt△FQH(AAS). ∴HE=HF.
复制答案
考点分析:
相关试题推荐
为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:
分数段频数频率
60≤x<70300.15
70≤x<80m0.45
80≤x<9060n
90≤x<100200.1
请根据以上图表提供的信息,解答下列问题:
(1)表中m和n所表示的数分别为:m=______,n=______
(2)请在图中,补全频数分布直方图;
(3)比赛成绩的中位数落在哪个分数段;
(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?

manfen5.com 满分网 查看答案
如图,某县城A距东西走向的一条铁路10km,县政府为改善城市人居环境,决定将城内一化工厂迁至距县城50km,方位为北偏东53°的B处(新厂址).
(1)求搬迁后的化工厂到铁路的距离;
(2)为方便县城居民和搬迁后化工厂货物运输,决定新修一个火车站和一条连接县城、火车站、化工厂的公路,火车站C修在直线DE的什么地方,使所修公路最短在图中作出点C的位置(保留作图痕迹,不要求写作法和证明).
(参考数据:sin53°≈0.8,cos53°≈0.6,sin37°≈0.6,cos37°≈0.8)

manfen5.com 满分网 查看答案
注意:为了使同学们更好地解答本题,下面提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.
如图①,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?
分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.
结合以上分析完成填空:如图②,用含x的代数式表示:
AB=______cm;
AD=______cm;
矩形ABCD的面积为______ cm2
列出方程并完成本题解答.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC、BC,若∠BAC=30°,CD=6cm.
(1)求∠BCD的度数;
(2)求⊙O的直径.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中x=3.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.