满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(...

如图1,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高,抛物线y=ax2+2x与直线y=manfen5.com 满分网x交于点O,C,点C的横坐标为6,点P在x轴的正半轴上,过点P作PE∥y轴.交射线OA于点E.设点P的横坐标为m,以A,B,D,E为顶点的四边形的面积为S.
(1)求OA所在直线的解析式.
(2)求a的值.
(3)当m≠3时,求S与m的函数关系式.
(4)如图2,设直线PE交射线OC于点R,交抛物线于点Q,以RQ为一边,在RQ的右侧作矩形RQMN,其中RN=manfen5.com 满分网.直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m的取值范围.
manfen5.com 满分网
(1)已知了A点的坐标,即可求出正比例函数直线OA的解析式; (2)根据C点的横坐标以及直线OC的解析式,可确定C点坐标,将其代入抛物线的解析式中即可求出待定系数a的值; (3)已知了A点的坐标,即可求出OD、AD的长,由于△OAB是等腰直角三角形,即可确定OB的长;欲求四边形ABDE的面积,需要分成两种情况考虑: ①0<m<3时,P点位于线段OD上,此时阴影部分的面积为△AOB、△ODE的面积差; ②m>3时,P点位于D点右侧,此时阴影部分的面积为△OBE、△OAD的面积差; 根据上述两种情况阴影部分的面积计算方法,可求出不同的自变量取值范围内,S、m的函数关系式; (4)若矩形RQMN与△AOB重叠部分为轴对称图形,首先要找出其对称轴; ①由于直线OA的解析式为y=x,若设QM与OA的交点为H,那么∠QEH=45°,△QEH是等腰直角三角形;那么当四边形QRNM是正方形时,重合部分是轴对称图形,此时的对称轴为QN所在的直线;可得QR=RN,由此求出m的值; ②以QM、RN的中点所在直线为对称轴,此时AD所在直线与此对称轴重合,可得PD=RN=,由OP=OD-PD即可求出m的值; ③当P、D重合时,根据直线OC的解析式y=x知:RD=;此时R是AD的中点,由于RN∥x轴,且RN==DB,所以N点恰好位于AB上,RN是△ABD的中位线,此时重合部分是等腰直角三角形REN,由于等腰直角三角形是轴对称图形,所以此种情况也符合题意,此时OP=OD=3,即m=3; 当R在AB上时,根据直线OC的解析式可用m表示出R的纵坐标,即可得到PR、PB的表达式,根据PR=PB即可求出m的值; 根据上述三种轴对称情况所得的m的值,及R在AB上时m的值,即可求得m的取值范围. 【解析】 (1)设直线OA的解析式为y=kx, 则有:3k=3,k=1; ∴直线OA的解析式为y=x; (2)当x=6时,y=x=3, ∴C(6,3); 将C(6,3)代入抛物线的解析式中, 得:36a+12=3,a=-; 即a的值为-; (3)根据题意,D(3,0),B(6,0). ∵点P的横坐标为m,PE∥y轴交OA于点E, ∴E(m,m). 当0<m<3时,如图1, S=S△OAB-S△OED =. 当m>3时,如图2, S=S△OBE-S△ODA = =. (4)m=. 提示: 如图3、RQ=RN时,m=3-; 如图4、AD所在的直线为矩形RQMN的对称轴时,m=; 如图5、RQ与AD重合时,重叠部分为等腰直角三角形,m=3; 如图6、当点R落在AB上时,m=4,所以3≤m<4.
复制答案
考点分析:
相关试题推荐
情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是______,∠CAC′=______°.manfen5.com 满分网
manfen5.com 满分网
问题探究manfen5.com 满分网
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.
查看答案
为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:
分数段频数频率
60≤x<70300.15
70≤x<80m0.45
80≤x<9060n
90≤x<100200.1
请根据以上图表提供的信息,解答下列问题:
(1)表中m和n所表示的数分别为:m=______,n=______
(2)请在图中,补全频数分布直方图;
(3)比赛成绩的中位数落在哪个分数段;
(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?

manfen5.com 满分网 查看答案
如图,某县城A距东西走向的一条铁路10km,县政府为改善城市人居环境,决定将城内一化工厂迁至距县城50km,方位为北偏东53°的B处(新厂址).
(1)求搬迁后的化工厂到铁路的距离;
(2)为方便县城居民和搬迁后化工厂货物运输,决定新修一个火车站和一条连接县城、火车站、化工厂的公路,火车站C修在直线DE的什么地方,使所修公路最短在图中作出点C的位置(保留作图痕迹,不要求写作法和证明).
(参考数据:sin53°≈0.8,cos53°≈0.6,sin37°≈0.6,cos37°≈0.8)

manfen5.com 满分网 查看答案
注意:为了使同学们更好地解答本题,下面提供了一种解题思路,你可以依照这个思路填空,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填空,只需按照解答题的一般要求,进行解答即可.
如图①,要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?
分析:由横、竖彩条的宽度比为2:3,可设每个横彩条的宽为2x,则每个竖彩条的宽为3x.为更好地寻找题目中的等量关系,将横、竖彩条分别集中,原问题转化为如图②的情况,得到矩形ABCD.
结合以上分析完成填空:如图②,用含x的代数式表示:
AB=______cm;
AD=______cm;
矩形ABCD的面积为______ cm2
列出方程并完成本题解答.

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC、BC,若∠BAC=30°,CD=6cm.
(1)求∠BCD的度数;
(2)求⊙O的直径.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.