满分5 >
初中数学试题 >
下列运算正确的是( ) A.x2+x3=x5 B.(x+y)2=x2+y2 C....
下列运算正确的是( )
A.x2+x3=x5
B.(x+y)2=x2+y2
C.(2xy2)3=6x3y6
D.-(x-y)=-x+y
考点分析:
相关试题推荐
下列各数中,最小的数是( )
A.-2
B.-1
C.0
D.
查看答案
如图1,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高,抛物线y=ax
2+2x与直线y=
x交于点O,C,点C的横坐标为6,点P在x轴的正半轴上,过点P作PE∥y轴.交射线OA于点E.设点P的横坐标为m,以A,B,D,E为顶点的四边形的面积为S.
(1)求OA所在直线的解析式.
(2)求a的值.
(3)当m≠3时,求S与m的函数关系式.
(4)如图2,设直线PE交射线OC于点R,交抛物线于点Q,以RQ为一边,在RQ的右侧作矩形RQMN,其中RN=
.直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m的取值范围.
查看答案
情境观察
将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是______,∠CAC′=______°.
问题探究
如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸
如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H.若AB=kAE,AC=kAF,试探究HE与HF之间的数量关系,并说明理由.
查看答案
为迎接国庆60周年,某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:
分数段 | 频数 | 频率 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | m | 0.45 |
80≤x<90 | 60 | n |
90≤x<100 | 20 | 0.1 |
请根据以上图表提供的信息,解答下列问题:
(1)表中m和n所表示的数分别为:m=______,n=______;
(2)请在图中,补全频数分布直方图;
(3)比赛成绩的中位数落在哪个分数段;
(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?
查看答案
如图,某县城A距东西走向的一条铁路10km,县政府为改善城市人居环境,决定将城内一化工厂迁至距县城50km,方位为北偏东53°的B处(新厂址).
(1)求搬迁后的化工厂到铁路的距离;
(2)为方便县城居民和搬迁后化工厂货物运输,决定新修一个火车站和一条连接县城、火车站、化工厂的公路,火车站C修在直线DE的什么地方,使所修公路最短在图中作出点C的位置(保留作图痕迹,不要求写作法和证明).
(参考数据:sin53°≈0.8,cos53°≈0.6,sin37°≈0.6,cos37°≈0.8)
查看答案