满分5 > 初中数学试题 >

如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C. (1)求...

如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)由于抛物线经过A(-2,0),B(-3,3)及原点O,待定系数法即可求出抛物线的解析式; (2)根据平行四边形的性质,对边平行且相等以及对角线互相平分,可以求出点D的坐标; (3)根据相似三角形对应边的比相等可以求出点P的坐标. 【解析】 (1)设抛物线的解析式为y=ax2+bx+c(a≠0),且过A(-2,0),B(-3,3),O(0,0)可得 , 解得. 故抛物线的解析式为y=x2+2x; (2)①当AO为边时, ∵A、O、D、E为顶点的四边形是平行四边形, ∴DE=AO=2, 则D在x轴下方不可能, ∴D在x轴上方且DE=2, 则D1(1,3),D2(-3,3); ②当AO为对角线时,则DE与AO互相平分, ∵点E在对称轴上,对称轴为直线x=-1, 由对称性知,符合条件的点D只有一个,与点C重合,即D3(-1,-1) 故符合条件的点D有三个,分别是D1(1,3),D2(-3,3),D3(-1,-1); (3)存在, 如图:∵B(-3,3),C(-1,-1),根据勾股定理得: BO2=18,CO2=2,BC2=20, ∴BO2+CO2=BC2. ∴△BOC是直角三角形. 假设存在点P,使以P,M,A为顶点的 三角形与△BOC相似, 设P(x,y),由题意知x>0,y>0,且y=x2+2x, ①若△AMP∽△BOC,则=, 即 x+2=3(x2+2x) 得:x1=,x2=-2(舍去). 当x=时,y=,即P(,). ②若△PMA∽△BOC,则=, 即:x2+2x=3(x+2) 得:x1=3,x2=-2(舍去) 当x=3时,y=15,即P(3,15). 故符合条件的点P有两个,分别是P(,)或(3,15).
复制答案
考点分析:
相关试题推荐
如图,已知△ABC中,AB=10,BC=8,AC=6,以BC为直径作⊙O,交AB边于点D,过点D作DF⊥BC,垂足为F,E为AC中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)求DF的长;
(3)在BC上是否存在一点P,使DP+EP最小?若存在,求出点P的位置;若不存在,请说明理由.

manfen5.com 满分网 查看答案
今年我省干旱灾情严重,甲地急需抗旱用水15万吨,乙地13万吨.现有两水库决定各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米
(1)设从A水库调往甲地的水量为x万吨,完成下表:
manfen5.com 满分网总计
Ax14
B14
总计151328
(2)请设计一个调运方案,使水的调运总量尽可能小.
查看答案
如图,某校九年级3班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚点A测得山腰上一点D的仰角为30°,并测得AD的长度为180米;另一部分同学在山顶点B测得山脚点A的俯角为45°,山腰点D的俯角为60度.请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)

manfen5.com 满分网 查看答案
阅读下面的材料:
把一个分式写成两个分式的和叫做把这个分式表示成“部分分式”
[例]将分式manfen5.com 满分网表示成部分分式.
【解析】
manfen5.com 满分网
将等式右边通分,得:manfen5.com 满分网=manfen5.com 满分网
依据题意得,manfen5.com 满分网解得manfen5.com 满分网
manfen5.com 满分网+manfen5.com 满分网
请你运用上面所学到的方法,解决下面的问题:
将分式manfen5.com 满分网表示成部分分式.
查看答案
如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.
(1)求证:△BDF≌△CDE;
(2)若AB=AC,求证:四边形BFCE是菱形.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.