满分5 > 初中数学试题 >

如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B...

如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1
(1)当a=-1,b=1时,求抛物线n的解析式;
(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;
(3)若四边形AC1A1C为矩形,请求出a,b应满足的关系式.

manfen5.com 满分网
(1)根据a=-1,b=1得出抛物线m的解析式,再利用C与C1关于点B中心对称,得出二次函数的顶点坐标,即可得出答案; (2)利用两组对边分别相等的四边形是平行四边形即可证明; (3)利用矩形性质得出要使平行四边形AC1A1C是矩形,必须满足AB=BC,即可求出. 【解析】 (1)当a=-1,b=1时,抛物线m的解析式为:y=-x2+1. 令x=0,得:y=1.∴C(0,1). 令y=0,得:x=±1. ∴A(-1,0),B(1,0), ∵C与C1关于点B中心对称, ∴抛物线n的解析式为:y=(x-2)2-1=x2-4x+3; (2) 四边形AC1A1C是平行四边形. 理由:连接AC,AC1,A1C, ∵C与C1、A与A1都关于点B中心对称, ∴AB=BA1,BC=BC1, ∴四边形AC1A1C是平行四边形. (3)令x=0,得:y=b.∴C(0,b). 令y=0,得:ax2+b=0,∴, ∴, ∴. 要使平行四边形AC1A1C是矩形,必须满足AB=BC, ∴,∴, ∴ab=-3. ∴a,b应满足关系式ab=-3.
复制答案
考点分析:
相关试题推荐
路边有一根电线杆AB和一块正方形广告牌.有一天,小明突然发现,在太阳光照射下,电线杆顶端A的影子刚好落在正方形广告牌的上边中点G处,而正方形广告牌的影子刚好落在地面上E点(如图),已知BC=5米,正方形边长为3米,DE=4米.
(1)求电线杆落在广告牌上的影长.
(2)求电线杆的高度(精确到0.1米).

manfen5.com 满分网 查看答案
小华与小丽设计了A,B两种游戏:
游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.
游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.
请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.
查看答案
国民体质监测中心等机构开展了青少年形体测评.专家组随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对专家的测评数据作了适当处理(如果一个学生有一种以上不良姿势,我们以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:
(1)请将两幅统计图补充完整;
(2)在这次形体测评中,一共抽查了______名学生,如果全市有10万名初中生,那么全市初中生中,三姿良好的学生约有______人;
(3)根据统计结果,请你简单谈谈自己的看法.
manfen5.com 满分网
查看答案
如图,在正方形ABCD中,E是AB边上任一点,BG⊥CE,垂足为点O,交AC于点F,交AD于点G.
(1)证明:BE=AG;
(2)当点E是AB边中点时,试比较∠AEF和∠CEB的大小,并说明理由.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.