满分5 >
初中数学试题 >
已知二次根式中最简二次根式共有( ) A.1个 B.2个 C.3个 D.4个
已知二次根式
中最简二次根式共有( )
A.1个
B.2个
C.3个
D.4个
考点分析:
相关试题推荐
如图1,矩形OABC的顶点O为原点,点E在AB上,把△CBE沿CE折叠,使点B落在OA边上的点D处,点A、D坐标分别为(10,0)和(6,0),抛物线
过点C、B.
(1)求C、B两点的坐标及该抛物线的解析式;
(2)如图2,长、宽一定的矩形PQRS的宽PQ=1,点P沿(1)中的抛物线滑动,在滑动过程中PQ∥x轴,且RS在PQ的下方,当P点横坐标为-1时,点S距离x轴
个单位,当矩形PQRS在滑动过程中被x轴分成上下两部分的面积比为2:3时,求点P的坐标;
(3)如图3,动点M、N同时从点O出发,点M以每秒3个单位长度的速度沿折线ODC按O→D→C的路线运动,点N以每秒8个单位长度的速度沿折线OCD按O⇒C⇒D的路线运动,当M、N两点相遇时,它们都停止运动.设M、N同时从点O出发t秒时,△OMN的面积为S.①求出S与t的函数关系式,并写出t的取值范围:②设S
是①中函数S的最大值,那么S
=______.
查看答案
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A
1B
1C.
(1)如图1,当AB∥CB
1时,设A
1B
1与BC相交于D.证明:△A
1CD是等边三角形;
(2)如图2,连接AA
1、BB
1,设△ACA
1和△BCB
1的面积分别为S
1、S
2.求证:S
1:S
2=1:3;
(3)如图3,设AC中点为E,A
1B
1中点为P,AC=a,连接EP,当θ=______°时,EP长度最大,最大值为______.
查看答案
如图所示,抛物线m:y=ax
2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C
1,与x轴的另一个交点为A
1.
(1)当a=-1,b=1时,求抛物线n的解析式;
(2)四边形AC
1A
1C是什么特殊四边形,请写出结果并说明理由;
(3)若四边形AC
1A
1C为矩形,请求出a,b应满足的关系式.
查看答案
路边有一根电线杆AB和一块正方形广告牌.有一天,小明突然发现,在太阳光照射下,电线杆顶端A的影子刚好落在正方形广告牌的上边中点G处,而正方形广告牌的影子刚好落在地面上E点(如图),已知BC=5米,正方形边长为3米,DE=4米.
(1)求电线杆落在广告牌上的影长.
(2)求电线杆的高度(精确到0.1米).
查看答案
小华与小丽设计了A,B两种游戏:
游戏A的规则:用3张数字分别是2,3,4的扑克牌,将牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小华获胜;若两数字之和为奇数,则小丽获胜.
游戏B的规则:用4张数字分别是5,6,8,8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小华先随机抽出一张牌,抽出的牌不放回,小丽从剩下的牌中再随机抽出一张牌.若小华抽出的牌面上的数字比小丽抽出的牌面上的数字大,则小华获胜;否则小丽获胜.
请你帮小丽选择其中一种游戏,使她获胜的可能性较大,并说明理由.
查看答案