满分5 > 初中数学试题 >

如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x...

如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:
x-3-212
ymanfen5.com 满分网-4manfen5.com 满分网
(1)求A、B、C三点的坐标;
(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k•DF,若点M不在抛物线P上,求k的取值范围.

manfen5.com 满分网
(1)根据图表可以得到,抛物线经过的四点的坐标,根据待定系数法,设y=ax2+bx+c把其中三点的坐标,就可以解得函数的解析式.进而就可以求出A、B、C的坐标. (2)易证△ADG∽△AOC,AD=2-m,根据相似三角形的对应边的比相等,就可以用m表示出DG的长,再根据△BEF∽△BOC,就可以表示出BE,就可以得到OE,因而ED就可以表示出来.因而S与m的函数关系就可以得到. (3)当矩形DEFG的面积S取最大值时,就是函数的值是最大值时,根据二次函数的性质就可以求出相应的m的值.则矩形的四个顶点的坐标就可以求出,根据待定系数法就可以求出直线DF的解析式.就可以求出直线DF与抛物线的交点的坐标,根据FM=k•DF,就可以表示出M的坐标,把M的坐标代入函数就可以得到一个关于k的方程,求出k的值,判断是否满足函数的解析式. 【解析】 (1)解法一:设y=ax2+bx+c(a≠0), 任取x,y的三组值代入,求出解析式y=x2+x-4, 令y=0,求出x1=-4,x2=2; 令x=0,得y=-4, ∴A、B、C三点的坐标分别是A(2,0),B(-4,0),C(0,-4). 解法二:由抛物线P过点(1,-),(-3,-)可知, 抛物线P的对称轴方程为x=-1, 又∵抛物线P过(2,0)、(-2,-4), ∴由抛物线的对称性可知, 点A、B、C的坐标分别为A(2,0),B(-4,0),C(0,-4). (2)由题意,=,而AO=2,OC=4,AD=2-m,故DG=4-2m, 又=,EF=DG,得BE=4-2m, ∴DE=3m, ∴SDEFG=DG•DE=(4-2m)3m=12m-6m2(0<m<2). (3)∵SDEFG=12m-6m2(0<m<2), ∴m=1时,矩形的面积最大,且最大面积是6. 当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0), 设直线DF的解析式为y=kx+b,易知,k=,b=-, ∴y=x-, 又可求得抛物线P的解析式为:y=x2+x-4, 令x-=x2+x-4,可求出x=. 设射线DF与抛物线P相交于点N,则N的横坐标为,过N作x轴的垂线交x轴于H, 有===, 点M不在抛物线P上,即点M不与N重合时,此时k的取值范围是 k≠且k>0.
复制答案
考点分析:
相关试题推荐
如图,在梯形ABCO中,A(0,2),B(4,2),O为原点,点C为x轴正半轴上一动点,M为线段BC中点.
(Ⅰ)设C(x,0),S△AOM=y,求y与x的关系式,并写出x的取值范围;
(Ⅱ)如果以线段AO为直径的⊙D与以BC为直径的⊙M外切,求x的值.
(Ⅲ)连BO,交线段AM于N,如果以A,N,B为顶点的三角形与△OMC相似,请写出直线CN的解析式(不要过程).manfen5.com 满分网
查看答案
某公司在A,B 两仓库分别有机器16台和12台,现要运往甲、乙两地,其中甲地需要15台,乙地需要13台,已知A,B 两地仓库运往甲,乙两地机器的费用如下面的左表所示.
(1)设从A仓库调x台机器去甲地,请用含x的代数式补全下面的右表;
机器调运费用表                       机器调运方案表

出发地

目的地   运费(台/元)
AB
出发地

目的地   机器(台)
AB合计
500300甲地x15
400600乙地13
合计161228
(2)设总运费为y元,求y与x之间的函数解析式,并写出自变量x的取值范围;
(3)由机器调运方案表可知共有n种调运方案,求n的值.
查看答案
某段笔直的限速公路上,规定汽车的最高行驶速度不能超过60 km/h(即manfen5.com 满分网m/s).交通管理部门在离该公路100 m处设置了一速度监测点A,在如图所示的坐标系中,点A位于y轴上,测速路段BC在x轴上,点B在点A的北偏西60°方向上,点C在点A的北偏东45°方向上.
(1)请在图中画出表示北偏东45°方向的射线AC,并标出点C的位置;
(2)点B坐标为______
查看答案
如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.

manfen5.com 满分网 查看答案
近日从省家电下乡联席办获悉,自2009年2月20日我省家电下乡全面启动以来,最受农户热捧的四种家电是冰箱、彩电、洗衣机和空调,其销售比为5:4:2:1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图:
manfen5.com 满分网
请根据以上信息解答问题:
(1)补全条形统计图;
(2)四种家电销售总量为______万台;
(3)扇形统计图中彩电部分所对应的圆心角是______度;
(4)为跟踪调查农户对这四种家电的使用情况,从已销售的家电中随机抽取一台家电,求抽到冰箱的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.