满分5 > 初中数学试题 >

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两...

已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.

manfen5.com 满分网
(1)已知抛物线过C(0,-2)点,那么c=-2;根据对称轴为x=-1,因此-=-1,然后将A点的坐标代入抛物线中,通过联立方程组即可得出抛物线的解析式. (2)本题的关键是确定P点的位置,由于A是B点关于抛物线对称轴的对称点,因此连接AC与抛物线对称轴的交点就是P点.可根据A,C的坐标求出AC所在直线的解析式,然后根据得出的一次函数的解析式求出与抛物线对称轴的交点即可得出P点的坐标. (3)△PDE的面积=△OAC的面积-△PDC的面积-△ODE的面积-△AEP的面积 △OAC中,已知了A,C的坐标,可求出△OAC的面积. △PDC中,以CD为底边,P的横坐标的绝对值为高,即可表示出△PDC的面积. △ODE中,可先用m表示出OD的长,然后根据△ODE与△OAC相似,求出OE的长,根据三角形的面积计算公式可用m表示出△ODE的面积. △PEA中,以AE为底边(可用OE的长表示出AE),P点的纵坐标的绝对值为高,可表示出△PEA的面积. 由此可表示出△ODE的面积,即可得出关于S,m的函数关系式.然后根据函数的性质求出三角形的最大面积以及对应的m的值. 【解析】 (1)由题意得, 解得, ∴此抛物线的解析式为y=x2+x-2. (2)连接AC、BC. 因为BC的长度一定, 所以△PBC周长最小,就是使PC+PB最小. B点关于对称轴的对称点是A点,AC与对称轴x=-1的交点即为所求的点P. 设直线AC的表达式为y=kx+b, 则, 解得, ∴此直线的表达式为y=-x-2, 把x=-1代入得y=- ∴P点的坐标为(-1,-). (3)S存在最大值, 理由:∵DE∥PC,即DE∥AC. ∴△OED∽△OAC. ∴,即, ∴OE=3-m,OA=3,AE=m, ∴S=S△OAC-S△OED-S△AEP-S△PCD =×3×2-×(3-m)×(2-m)-×m×-×m×1 =-m2+m=-(m-1)2+ ∵ ∴当m=1时,S最大=.
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).
(1)求边OA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;
(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

manfen5.com 满分网 查看答案
在国家政策的宏观调控下,某市的商品房成交价由今年3月份的14000元/m2下降到5月份的12600元/m2
(1)问4、5两月平均每月降价的百分率是多少?(参考数据:manfen5.com 满分网≈0.95)
(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.
查看答案
如图,⊙O的半径为5cm,AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB.
(1)求证:PC是⊙O的切线;
(2)求线段BC的长度.

manfen5.com 满分网 查看答案
如图,从热气球C上测得两建筑物A、B底部的俯角分别为30°和60度.如果这时气球的高度CD为90米.且点A、D、B在同一直线上,求建筑物A、B间的距离.

manfen5.com 满分网 查看答案
阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.1995年联合国教科文组织把每年4月23日确定为“世界读书日”.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表1是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:
图书种类频数频率
科普常识840B
名人传记8160.34
漫画丛书A0.25
表(1)
其它
1440.06
(1)求该校八年级的人数占全校总人数的百分率;
(2)求表1中A,B的值;
(3)该校学生平均每人读多少本课外书?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.