如图,抛物线与x轴交于A(x
1,0)、B(x
2,0)两点,且x
1<x
2,与y轴交于点C(0,-4),其中x
1,x
2是方程x
2-4x-12=0的两个根.
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
姚明将带队来我市体育馆进行表演比赛,市体育局在策划本次活动,在与单位协商团购票时推出两种方案.设购买门票数为x(张),总费用为y(元).
方案一:若单位赞助广告费8000元,则该单位所购门票的价格为每张50元;(总费用=广告赞助费+门票费)
方案二:直接购买门票方式如图所示.
解答下列问题:
(1)方案一中,y与x的函数关系式为______;
方案二中,当0≤x≤100时,y与x的函数关系式为______,
当x>100时,y与x的函数关系式为______;
(2)如果购买本场篮球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由;
(3)甲、乙两单位分别采用方案一、方案二购买本场篮球赛门票共700张,花去总费用计56000元,求甲、乙两单位各购买门票多少张.
查看答案
点D是⊙O的直径CA延长线上一点,点B在⊙O上,A是OD的中点,且AB=AD.
(1)求证:BD是⊙O的切线.
(2)如果⊙O的半径为1,弦AE∥BD,cos∠AEB=
,求阴影部分的面积.
查看答案
如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.
(1)求△OAB的面积;
(2)若抛物线y=-x
2-2x+c经过点A.
①求c的值;
②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB的边界),求m的取值范围(直接写出答案即可).
查看答案
青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处观察羊羊们时,发现懒洋洋在大树底下睡懒觉,此时,测得懒洋洋所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=40米,若灰太狼以5m/s的速度从城堡底部D处出发,几秒种后能抓到懒羊羊?(结果精确到个位).
查看答案
一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同.
(1)求摸出1个球是白球的概率;
(2)摸出1个球,记下颜色后放回,并搅均,再摸出1个球.求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);
(3)现再将n个白球放入布袋,搅均后,使摸出1个球是白球的概率为
.求n的值.
查看答案