考点分析:
相关试题推荐
已知:直线AB:y=
x+3与x轴交于点A,与y轴交于点B,另外有点C(0,2)和点M(m,0).⊙M以MC为半径,⊙M与直线AB相切,求经过点A、B、M的抛物线的解析式.
查看答案
在△ABC中,∠A=90°,点D在线段BC上,∠EDB=
∠C,BE⊥DE,垂足为E,DE与AB相交于点F.
(1)当AB=AC时,(如图1),
①∠EBF=______°;
②探究线段BE与FD的数量关系,并加以证明;
(2)当AB=kAC时(如图2),求
的值(用含k的式子表示).
查看答案
如图,直线y=kx+k(k≠0)与双曲线y=
在第一象限内相交于点M,与x轴交于点A.
(1)求m的取值范围和点A的坐标;
(2)若点B的坐标为(3,0),AM=5,S
△ABM=8,求双曲线的函数表达式.
查看答案
关于x的方程
有两个不相等的实数根.
(1)求k的取值范围;
(2)是否存在实数k,使方程两个实数根的倒数和等于0?若存在,求出k的值,若不存在,说明理由.
查看答案
如图,某数学课外活动小组测量电视塔AB的高度.他们借助一个高度为30m的建筑物CD进行测量,在点C处测得塔顶B的仰角为45°,在点E处测得B的仰角为37°(B、D、E三点在一条直线上).求电视塔的高度h.
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案