如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A--B--C--E的方向运动,到点E停止;动点Q沿B--C--E--D的方向运动,到点D停止,设运动时间为xs,△PAQ的面积为y cm
2,(这里规定:线段是面积为0的三角形)
解答下列问题:
(1)当x=2s时,y=______cm
2;当x=
s时,y=______cm
2;
(2)当5≤x≤14 时,求y与x之间的函数关系式;
(3)当动点P在线段BC上运动时,求出y=
S
梯形ABCD时x的值.
考点分析:
相关试题推荐
已知抛物线y=x
2-2x+m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.
(1)求m的值;
(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线C′,且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线C′上求点P,使得△EFP是以EF为直角边的直角三角形.
查看答案
有甲乙两个均装有进水管和出水管的容器,初始时,两容器同时开进水管,甲容器到8分钟时,关闭进水管打开出水管;到16分钟时,又打开了进水管,此时既进水又出水,到28分钟时,同时关闭两容器的进水管.两容器每分钟进水量与出水量均为常数,容器的水量y(升)与时间x(分)之间的函数关系如图所示,解答下列问题:
(1)甲容器的进水管每分钟进水______升,出水管每分钟出水______升.
(2)求乙容器内的水量y与时间x的函数关系式.
(3)求从初始时刻到两容器最后一次水量相等时所需的时间.
查看答案
(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2),并求出B点坐标;
(2)以原点O为位似中心,相似比为2:1,在第一象限内将△ABC放大,画出放大后的图形△A′B′C′.
查看答案
如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sinB=
,∠D=30度.
(1)求证:AD是⊙O的切线;
(2)若AC=6,求AD的长.
查看答案
小明与小亮玩游戏,他们将牌面数字分别是2,3,4的三张扑克牌充分洗匀后,背面朝上放在桌面上.规定游戏规则如下:先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再从中随机抽出一张牌,将牌面数字作为个位上的数字.如果组成的两位数恰好是2的倍数.则小明胜;如果组成的两位数恰好是3的倍数.则小亮胜.
你认为这个游戏规则对双方公平吗?请用画数状图或列表的方法说明理由.
查看答案