满分5 > 初中数学试题 >

下列运算正确的是( ) A.x3•x4=x12 B.(-6x6)÷(-2x2)=...

下列运算正确的是( )
A.x3•x4=x12
B.(-6x6)÷(-2x2)=3x3
C.2a-3a=-a
D.(x-2)2=x2-4
根据同底数幂相乘,底数不变指数相加;单项式除单项式的法则;合并同类项法则;完全平方公式,对各选项分析判断后利用排除法求解. 【解析】 A、应为x3•x4=x3+4=x7,故本选项错误; B、应为(-6x6)÷(-2x2)=3x4,故本选项错误; C、2a-3a=-a,正确; D、应为(x-2)2=x2-4x+4,故本选项错误. 故选C.
复制答案
考点分析:
相关试题推荐
-2的倒数是a,则a的相反数是( )
A.-2
B.-manfen5.com 满分网
C.manfen5.com 满分网
D.2
查看答案
如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点______(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

manfen5.com 满分网 查看答案
问题提出
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
问题解决
如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.
【解析】
由图可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
类比应用
(1)已知小丽和小颖购买同一种商品的平均价格分别为manfen5.com 满分网元/千克和manfen5.com 满分网元/千克(a、b是正数,且a≠b),试比较小丽和小颖所购买商品的平均价格的高低.
(2)试比较图2和图3中两个矩形周长M1、N1的大小(b>c).
manfen5.com 满分网
联系拓广
小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b>a>c>0),售货员分别可按图5、图6、图7三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由.
manfen5.com 满分网
查看答案
如图,已知二次函数y=ax2-4x+c的图象与坐标轴交于点A(-1,0)和点B(0,-5).
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数manfen5.com 满分网(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE=manfen5.com 满分网
(1)求该反比例函数和一次函数的解析式;
(2)求△AOC的面积.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.