满分5 > 初中数学试题 >

如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE....

如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
(3)运用(1)(2)解答中所积累的经验和知识,完成下题:
如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.
manfen5.com 满分网manfen5.com 满分网
(1)利用已知条件,可证出△BCE≌△DCF(SAS),即CE=CF. (2)借助(1)的全等得出∠BCE=∠DCF,∴∠GCF=∠BCE+∠DCG=90°-∠GCE=45°,即∠GCF=∠GCE,又因为CE=CF,CG=CG,∴△ECG≌△FCG,∴EG=GF,∴GE=DF+GD=BE+GD. (3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形). 再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理可求出DE. (1)证明:在正方形ABCD中, ∵BC=CD,∠B=∠CDF,BE=DF, ∴△CBE≌△CDF. ∴CE=CF. (2)【解析】 GE=BE+GD成立. ∵△CBE≌△CDF, ∴∠BCE=∠DCF. ∴∠ECD+∠ECB=∠ECD+∠FCD. 即∠ECF=∠BCD=90°. 又∠GCE=45°, ∴∠GCF=∠GCE=45°. ∵CE=CF,∠GCF=∠GCE,GC=GC, ∴△ECG≌△FCG. ∴EG=GF. ∴GE=DF+GD=BE+GD. (3)【解析】 过C作CG⊥AD,交AD延长线于G, 在直角梯形ABCD中, ∵AD∥BC,∠A=∠B=90°, 又∠CGA=90°,AB=BC, ∴四边形ABCG为正方形. ∴AG=BC=12. 已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG, 设DE=x,则DG=x-4, ∴AD=AG-DG=16-x,AE=AB-BE=12-4=8. 在Rt△AED中 ∵DE2=AD2+AE2,即x2=(16-x)2+82 解得:x=10. ∴DE=10.
复制答案
考点分析:
相关试题推荐
如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小亮和小颖利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.
(1)请你通过画树状图的方法求小颖获胜的概率;
(2)你认为该游戏规则是否公平?若游戏规则公平,请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.

manfen5.com 满分网 查看答案
如图已知,△OAB中,AB=AO=5,OB=6,双曲线manfen5.com 满分网过点A,直线y=kx+b与双曲线manfen5.com 满分网,相交于A、C两点,且C点的横坐标为6.
①求点A的坐标;②求双曲线manfen5.com 满分网与直线AC的解析式.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中x=-manfen5.com 满分网
查看答案
如图,海平面上灯塔O方圆100千米范围内有暗礁.一艘轮船自西向东方向航行,在点A处测量得灯塔O在北偏东60°方向,继续航行100千米后,在点B处测量得灯塔O在北偏东37°方向.请你作出判断,为了避免触礁,这艘轮船是否要改变航向?______.(填“是”或“否”,参考数据:sin37°≈0.6018,cos37°≈0.7986,tan37°≈0.7536,cot37°≈1.327,manfen5.com 满分网≈1.732).

manfen5.com 满分网 查看答案
已知:如图,在▱ABCD中,E,F,G,H分别是AB,BC,CD,DA,上的点,且AE=CG,BF=DH.
求证:△AEH≌△CGF.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.