首先过点O作OC⊥AB于点C,由垂径定理可得:AC=AB,又由PA、PB是⊙O的切线,由切线长定理可得PA=PB,由∠P=60°,即可得△PAB是等边三角形,继而可求得∠OAC=30°,则可求得AC的长,继而求得答案.
【解析】
过点O作OC⊥AB于点C,
∴AC=AB,
∵PA、PB是⊙O的切线,
∴PA=PB,OA⊥PA,
∵∠P=60°,
∴△PAB是等边三角形,
∴∠PAB=60°,
∴∠OAC=90°-∠PAB=30°,
在Rt△AOC中,OA=3,
∴AC=OA•cos30°=3×=,
∴AB=2AC=3.
故答案为:3.