满分5 > 初中数学试题 >

如图,己知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C...

如图,己知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,-3).
(1)求抛物线的解析式;
(2)如图(1),己知点H(0,-1).问在抛物线上是否存在点G (点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标;若不存在,请说明理由;
(3)如图(2),抛物线上点D在x轴上的正投影为点E(-2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.
manfen5.com 满分网
(1)由抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,-3),利用待定系数法即可求得二次函数的解析式; (2)分别从GH∥AC与GH与AC不平行去分析,注意先求得直线GH的解析式,根据交点问题即可求得答案,小心不要漏解; (3)利用待定系数法求得直线DF的解析式,即可证得△PBE∽△FDP,由相似三角形的对应边成比例,即可求得答案. 【解析】 (1)由题意得:, 解得:, ∴抛物线的解析式为:y=x2+2x-3; (2)解法一: 假设在抛物线上存在点G,设G(m,n),显然,当n=-3时,△HGC不存在. ①当n>-3时, 可得S△GHA=-++,S△GHC=-m, ∵S△GHC=S△GHA, ∴m+n+1=0, 由, 解得:或, ∵点G在y轴的左侧, ∴G(-,); ②当-4≤n<-3时, 可得S△GHA=--,S△GHC=-m, ∵S△GHC=S△GHA, ∴3m-n-1=0, 由, 解得:或, ∵点G在y轴的左侧, ∴G(-1,-4). ∴存在点G(-,)或G(-1,-4). 解法二: ①如图①,当GH∥AC时,点A,点C到GH的距离相等, ∴S△GHC=S△GHA, 可得AC的解析式为y=3x-3, ∵GH∥AC,得GH的解析式为y=3x-1, ∴G(-1,-4); ②如图②,当GH与AC不平行时, ∵点A,C到直线GH的距离相等, ∴直线GH过线段AC的中点M(,-). ∴直线GH的解析式为y=-x-1, ∴G(-,), ∴存在点G(-,)或G(-1,-4). (3)解法一: 如图③,∵E(-2,0), ∴D的横坐标为-2, ∵点D在抛物线上, ∴D(-2,-3), ∵F是OC中点, ∴F(0,-), ∴直线DF的解析式为:y=x-, 则它与x轴交于点Q(2,0), 则QB=QD,得∠QBD=∠QDB,∠BPE+∠EPF+∠FPD=∠DFP+∠PDF+∠FPD=180°, ∵∠EPF=∠PDF, ∴∠BPE=∠DFP, ∴△PBE∽△FDP, ∴, 得:PB•DP=, ∵PB+DP=BD=, ∴PB=, 即P是BD的中点, 连接DE, ∴在Rt△DBE中,PE=BD=. 解法二: 可知四边形ABDC为等腰梯形,取BD的中点P′, P′F=(OB+CD)=, P′F∥CD∥AB, 连接EF,可知EF=DF=, 即EF=FP′=FD, 即△FEP′相似△FP′D, 即∠EP′F=∠FP′D=∠FDP′, 即∠EP′F和∠EPF重合, 即P和P′重合, P为BC中点, PE=BD=(△BDE为直角三角形).
复制答案
考点分析:
相关试题推荐
如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=5manfen5.com 满分网,且tan∠EDA=manfen5.com 满分网
(1)判断△OCD与△ADE是否相似?请说明理由;
(2)求直线CE与x轴交点P的坐标;
(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.

manfen5.com 满分网 查看答案
一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).
(1)用含x的代数式表示,今年生产的这种玩具每件的成本为______元,今年生产的这种玩具每件的出厂价为______元.
(2)求今年这种玩具的每件利润y元与x之间的函数关系式.
(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?
注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.
查看答案
如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为manfen5.com 满分网(即AB:BC=manfen5.com 满分网),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).

manfen5.com 满分网 查看答案
如图,⊙O的直径AB=4,C、D为圆周上两点,且四边形OBCD是菱形,过点D的直线EF∥AC,交BA、BC的延长线于点E、F.
(1)求证:EF是⊙O的切线;
(2)求DE的长.

manfen5.com 满分网 查看答案
一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:
manfen5.com 满分网
(1)请补充完成下面的成绩统计分析表:
 平均分方差中位数合格率优秀率
甲组6.92.4 91.7%16.7%
乙组 1.3 83.3%8.3%
(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.