满分5 > 初中数学试题 >

如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点. (1)求抛物线...

如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.
(1)求抛物线的解析式.
(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t秒的移动,线段PQ被BD垂直平分,求t的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC有最小值?若存在,请求出点M的坐标;若不存在,请说明理由.(注:抛物线y=ax2+bx+c的对称轴为x=-manfen5.com 满分网

manfen5.com 满分网
(1)因为抛物线经过的三点为与两坐标轴的交点,故有两种方法(1)用一般式解答,(2)用交点式(两点式)解答; (2)找到变化过程中的不变关系:△CDQ∽△CAB,根据相似三角形的性质计算; (3)因为A、C关于x=对称,所以MQ+MC的最小值即为MQ+MA的最小值,根据两点之间线段最短,A、M、Q共线时MQ+MC可取最小值. 【解析】 (1)解法一:设抛物线的解析式为 y=a(x+3)(x-4) 因为B(0,4)在抛物线上, 所以4=a(0+3)(0-4) 解得a=- 所以抛物线解析式为 y=-(x+3)(x-4)=-x2+x+4 解法二:设抛物线的解析式为y=ax2+bx+c(a≠0), 依题意得:c=4且 解得 所以所求的抛物线的解析式为y=-x2+x+4. (2)连接DQ,在Rt△AOB中,AB===5 所以AD=AB=5,AC=AO+CO=3+4=7,CD=AC-AD=7-5=2 因为BD垂直平分PQ, 所以PD=QD,PQ⊥BD, 所以∠PDB=∠QDB 因为AD=AB, 所以∠ABD=∠ADB,∠ABD=∠QDB, 所以DQ∥AB 所以∠CQD=∠CBA.∠CDQ=∠CAB, 所以△CDQ∽△CAB,= 即=,DQ= 所以AP=AD-DP=AD-DQ=5-=, t=÷1=, 所以t的值是. (3)答:对称轴上存在一点M,使MQ+MC的值最小 理由:因为抛物线的对称轴为x=-= 所以A(-3,0),C(4,0)两点关于直线x=对称 连接AQ交直线x=于点M,则MQ+MC的值最小 ∵过点Q作QE⊥x轴于E, ∴∠QED=∠BOA=90度 DQ∥AB,∠BAO=∠QDE,△DQE∽△ABO,== 即== 所以QE=,DE=, 所以OE=OD+DE=2+=, 所以Q(,) 设直线AQ的解析式为y=kx+m(k≠0) 则 由此得 所以直线AQ的解析式为y=x+ 联立 由此得 所以M(,) 则:在对称轴上存在点M(,),使MQ+MC的值最小.
复制答案
考点分析:
相关试题推荐
下列图表是某校今年参加中考体育的男生1000米跑、女生800米跑的成绩中分别抽取的10个数据.
考生编号12345678910
男生成绩 3′05″ 3′11″ 3′53″ 3′10″3′55″ 3′30″ 3′25″ 3′19″ 3′27″ 3′55″
manfen5.com 满分网
(1)求出这10名女生成绩的中位数、众数和极差;
(2)按《云南省中考体育》规定,女生800米跑成绩不超过3′38〞就可以得满分.该校学生有490人,男生比女生少70人.请你根据上面抽样的结果,估算该校考生中有多少名女生该项考试得满分?
(3)若男考生1号和10号同时同地同向围着400米跑道起跑,在1000米的跑步中,他们能否首次相遇?如果能相遇,求出所需时间;如果不能相遇,说明理由.
查看答案
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连EC,CD
(1)试猜想直线AB于⊙O的位置关系,并说明理由;
(2)求证:BC2=BD•BE;
(3)若tan∠CED=manfen5.com 满分网,⊙O的半径为3,求△OAB的面积.

manfen5.com 满分网 查看答案
某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?
查看答案
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)求证:BD=CD;
(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

manfen5.com 满分网 查看答案
已知每个网格中小正方形的边长都是1,图1中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.
(1)填空:图1中阴影部分的面积是______(结果保留π);
(2)请你在图2中以图1为基本图案,借助轴对称、平移或旋转设计一个完整的花边图案(要求至少含有两种图形变换).manfen5.com 满分网

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.