如图,在平面直角坐标系中,点A(2,0),C(0,1),以OA、OC为边在第一象限内作矩形OABC,点D(x,0)(x>0),以BD为斜边在BD上方做等腰直角三角形BDM,作直线MA交y轴于点N,连接ND.
(1)求证:①A、B、M、D四点在同一圆周上;②ON=OA;
(2)若0<x≤4,记△NDM的面积为y,试求y关于x的函数关系式,并求出△NDM面积的最大值;
(3)再点D运动过程中,是否存在某一位置,使DM⊥DN?若存在,请求出此时点D的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
已知抛物线y=ax
2+bx+c的顶点为M(1,4),且与直线y=-ax+1相交于A,P两点,与y轴交于点Q,点A在x轴的负半轴上,且OA的长为2+
.
(1)求直线和抛物线的解析式;
(2)若点C为抛物线上一点,以C为圆心的圆与直线y=-ax+1交于G,H,试问是否存在点C,使OG=OH?若存在,请求出点C的坐标;若不存在,请说明理由.
查看答案
如图1,已知Rt△ABC中,∠CAB=30°,BC=5.过点A作AE⊥AB,且AE=15,连接BE交AC于点P.
(1)求PA的长;
(2)以点A为圆心,AP为半径作⊙A,试判断BE与⊙A是否相切,并说明理由;
(3)如图2,过点C作CD⊥AE,垂足为D.以点A为圆心,r为半径作⊙A;以点C为圆心,R为半径作⊙C.若r和R的大小是可变化的,并且在变化过程中保持⊙A和⊙C相切,且使D点在⊙A的内部,B点在⊙A的外部,求r和R的变化范围.
查看答案
近日全球多国暴发猪流感疫情,为预防疫情,某食品厂对屠宰加工车间进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(min)成正比例;燃烧后,y与x成反比例,(如图所示).现测得点燃药物后3min与12min,室内每立方米空气中的含药量为2mg.据以上信息解答下列问题:
(1)药物燃烧时y与x的函数关系式为______;燃烧后y与x的函数关系式为______.
(2)通过计算说明药物经多长时间燃烧尽?
(3)当每立方米空气中的含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间工作人员才可以回室内?
查看答案
如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成3等分,每份分别标有1,2,3这三个数字;转盘B被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.
(1)请你用列表或树形图求出小明胜和小飞胜的概率;
(2)游戏公平吗?若不公平,请你设计一个公平的规则.
查看答案
甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图1、图2的统计图.
(1)在图2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况;
(2)已知甲队五场比赛成绩的平均分x
甲=90分,请你计算乙队五场比赛成绩的平均分x
乙;
(3)就这五场比赛,分别计算两队成绩的极差;
(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?
查看答案