满分5 > 初中数学试题 >

如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y...

如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)直接写出A、B、C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
②设△BCF的面积为S,求S与m的函数关系式.

manfen5.com 满分网
(1)已知了抛物线的解析式,当y=0时可求出A,B两点的坐标,当x=0时,可求出C点的坐标.根据对称轴x=-可得出对称轴的解析式. (2)PF的长就是当x=m时,抛物线的值与直线BC所在一次函数的值的差.可先根据B,C的坐标求出BC所在直线的解析式,然后将m分别代入直线BC和抛物线的解析式中,求得出两函数的值的差就是PF的长. 根据直线BC的解析式,可得出E点的坐标,根据抛物线的解析式可求出D点的坐标,然后根据坐标系中两点的距离公式,可求出DE的长,然后让PF=DE,即可求出此时m的值. (3)可将三角形BCF分成两部分来求: 一部分是三角形PFC,以PF为底边,以P的横坐标为高即可得出三角形PFC的面积. 一部分是三角形PFB,以PF为底边,以P、B两点的横坐标差的绝对值为高,即可求出三角形PFB的面积. 然后根据三角形BCF的面积=三角形PFC的面积+三角形PFB的面积,可求出关于S、m的函数关系式. 【解析】 (1)A(-1,0),B(3,0),C(0,3). 抛物线的对称轴是:直线x=1. (2)①设直线BC的函数关系式为:y=kx+b. 把B(3,0),C(0,3)分别代入得: 解得:k=-1,b=3. 所以直线BC的函数关系式为:y=-x+3. 当x=1时,y=-1+3=2, ∴E(1,2). 当x=m时,y=-m+3, ∴P(m,-m+3). 在y=-x2+2x+3中,当x=1时,y=4. ∴D(1,4) 当x=m时,y=-m2+2m+3, ∴F(m,-m2+2m+3) ∴线段DE=4-2=2, 线段PF=-m2+2m+3-(-m+3)=-m2+3m ∵PF∥DE, ∴当PF=ED时,四边形PEDF为平行四边形. 由-m2+3m=2,解得:m1=2,m2=1(不合题意,舍去). 因此,当m=2时,四边形PEDF为平行四边形. ②设直线PF与x轴交于点M,由B(3,0),O(0,0),可得:OB=OM+MB=3. ∵S=S△BPF+S△CPF 即S=PF•BM+PF•OM=PF•(BM+OM)=PF•OB. ∴S=×3(-m2+3m)=-m2+m(0≤m≤3).
复制答案
考点分析:
相关试题推荐
为了保护环境,某企业决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如右表:经预算,该企业购买设备的资金不高于105万元.
A型B型
价格(万元/台)1210
处理污水量(吨/月)240200
年消耗费(万元/台)11
(1)请你设计该企业有几种购买方案;
(2)若企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案;
(3)在第(2)问的条件下,若每台设备的使用年限为10年,污水厂处理污水费为每吨10元,请你计算,该企业自己处理污水与将污水排到污水厂处理相比较,10年节约资金多少万元?(注:企业处理污水的费用包括购买设备的资金和消耗费)
查看答案
如图1,已知E、F、G、H分别为四边形ABCD的边AB、BC、CD、DA的中点,连接EF、FG、GH、HE.
(1)求证:四边形EFGH是平行四边形(提示:可连接AC或BD);
(2)在电脑上用适当的应用程序画出图1,然后用鼠标拖动点D,当点D在原四边形ABCD的内部,在原四边形ABCD的外部时,图1依次变为图2、图3.图2、图3中四边形EFGH还是平行四边形吗?选择其中之一说明理由.
manfen5.com 满分网
查看答案
小明根据第十五届多哈亚运会奖牌榜,绘制了金牌数分布情况的条形统计图(图1)和扇形统计图(图2)的一部分.
manfen5.com 满分网
(1)根据图1、图2提供的信息,将中国、韩国、日本、其它国家获得的金牌数和金牌总数填入表中相应的空格内,并将图1中的“韩国”部分补充完整;
国家金牌银牌铜牌奖牌总数
中国______8863316
韩国__________________193
日本__________________198
其他国家______211320686
合计4235421393
(2)计算出中国、韩国、日本获得的金牌数占金牌总数的百分数(精确到0.1%),并在图2中标出;
(3)已知韩国获得的银牌比日本获得的银牌少18枚,分别求出韩国和日本获得的银牌数和铜牌数,并将结果填入表1相应的空格内.
查看答案
如图,已知AB为⊙O的直径,EA为⊙O的切线,A为切点,D是EA上一点,且∠DBA=30°,DB交⊙O于点C,连接OC并延长交EA于点P.
(1)求证:OA=manfen5.com 满分网OP;
(2)若⊙O的半径为manfen5.com 满分网cm,求四边形OADC的面积.

manfen5.com 满分网 查看答案
同时掷两个质地均匀的骰子,观察向上的一面的点数.
(1)用表格或树状图表示所有可能出现的结果,并求两个骰子点数之和为7的概率;
(2)小王通过反复试验后得出猜想:两个骰子点数之和为6的概率与两个骰子点数之和为8的概率相等.你认为小王的猜想是否正确?说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.