如图,在矩形ABCD中,AB=3,BC=4,P是边BC延长线上的一点,连接AP交边CD于点E,把射线AP沿直线AD翻折,交射线CD于点Q,设CP=x,DQ=y,
(1)求证:△ADQ∽△PBA,并求出y关于x的函数解式;
(2)当点P运动时,△APQ的面积S是否会发生变化?若发生变化,请说明理由:若不发生变化,请求出S的值;
(3)当以4为半径的⊙Q与直线AP相切,且⊙A与⊙Q也相切时,求⊙A的半径.
考点分析:
相关试题推荐
2011年10月20日起,杭州市调整出租车运价,设里程数为x公里,当x<3时,起步价从原来3公里以内10元另加1元燃油附加费合并调整后仍为11元;当3<x<10时,从原每公里2元调整为2.5元;当x>10时,从原来每公里3元调整为3.75元;等候费从原每5分钟2元调整为每4分钟2.5元(不足1公里以1公里计).假设遇红灯及堵车等候时间共计20分钟,请问:
(1)调整前花60元钱最远可以坐多少公里?
(2)调整后花60元钱最远可以坐多少公里?
查看答案
设a,b,c是△ABC的三边长,二次函数
(其中2a≠b),
(1)当b=2a+8c时,求二次函数的对称轴;
(2)当x=1时,二次函数最小值为
b,试判断△ABC的形状,并说明理由.
查看答案
第15中学的九年级学生在社会实践中,调查了500位杭州市民某天早上出行上班所用的交通工具,结果用以下扇形统计图表示.
(1)请你将这个统计图改成用折线统计图表示的形式;
(2)请根据此项调查,对城市交通给政府提出一条建议.
查看答案
一条船上午8点在A处望见西南方向有一座灯塔B(如图),此时测得船和灯塔相距60
海里,船以每小时30海里的速度向南偏西24°的方向航行到C处,这时望见灯塔在船的正北方向(参考数据:sin24°≈0.4,cos24°≈0.9).
(1)求几点钟船到达C处;
(2)求船到达C处时与灯塔之间的距离.
查看答案
小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.
(1)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).
(2)在△ABC中,AC=4米,∠ABC=45°,试求小明家圆形花坛的半径长.
查看答案