如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x
2+bx+c经过点O和点P,已知矩形ABCD的三个顶点为 A (1,0),B (1,-5),D (4,0).
(1)求c,b (用含t的代数式表示):
(2)当4<t<5时,设抛物线分别与线段AB,CD交于点M,N.
①在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;
②求△MPN的面积S与t的函数关系式,并求t为何值时,
;
(3)在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t的取值范围.
查看答案
探究问题:
已知AD、BE分别为△ABC 的边BC、AC上的中线,且AD、BE交于点O.
(1)△ABC为等边三角形,如图1,则AO:OD=______;
(2)当小明做完(1)问后继续探究发现,若△ABC为一般三角形(如图2),(1)中的结论仍成立,请你给予证明.
(3)运用上述探究的结果,解决下列问题:
如图3,在△ABC中,点E是边AC的中点,AD平分∠BAC,AD⊥BE于点F,若AD=BE=4.求:△ABC的周长.
查看答案