满分5 > 初中数学试题 >

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边A...

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=manfen5.com 满分网S△ABC;若不存在,请说明理由.
manfen5.com 满分网
(1)根据AD1=BD2就可以证明AD2=BD1,根据等角对等边证明AD2=D2F,D1E=D1B即可. (2)由于△AC1D1与△BC2D2重叠部分为不规则图形,所以将其面积转化为S△BC2D2-S△BED1-S△FC2P,再求各三角形的面积即可. (3)先假设存在x的值使得y=S△ABC,再求出△ABC的面积,然后根据(2)所求y=-x2+x(0≤x≤5)建立等量关系,解出x的值,即可证明存在x的值. 【解析】 (1)D1E=D2F. ∵C1D1∥C2D2, ∴∠C1=∠AFD2. 又∵∠ACB=90°,CD是斜边上的中线, ∴DC=DA=DB,即C1D1=C2D2=BD2=AD1 ∴∠C1=∠A, ∴∠AFD2=∠A ∴AD2=D2F. 同理:BD1=D1E. 又∵AD1=BD2, ∴AD2=BD1. ∴D1E=D2F. (2)∵在Rt△ABC中,AC=8,BC=6, ∴由勾股定理,得AB=10. 即AD1=BD2=C1D1=C2D2=5 又∵D2D1=x, ∴D1E=BD1=D2F=AD2=5-x. ∴C2F=C1E=x 在△BC2D2中,C2到BD2的距离就是△ABC的AB边上的高,为. 设△BED1的BD1边上的高为h, 由探究,得△BC2D2∽△BED1, ∴. ∴h=.S△BED1=×BD1×h=(5-x)2 又∵∠C1+∠C2=90°, ∴∠FPC2=90度. 又∵∠C2=∠B,sinB=,cosB=. ∴PC2=x,PF=x,S△FC2P=PC2×PF=x2 而y=S△BC2D2-S△BED1-S△FC2P=S△ABC-(5-x)2-x2 ∴y=-x2+x(0≤x≤5). (3)存在. 当y=S△ABC时,即-x2+x=6, 整理得3x2-20x+25=0. 解得,x1=,x2=5. 即当x=或x=5时,重叠部分的面积等于原△ABC面积的.
复制答案
考点分析:
相关试题推荐
如图,已知点A(0,8),以A为顶点的四边形ABCD是平行四边形,且顶点B,C,D在抛物线y=manfen5.com 满分网x2上,AD∥x轴,点D在第一象限.
(1)求BC的长;
(2)若点P是线段CD上一动点,当点P运动到何位置时,当点P运动到何位置时,△DAP的面积是7?

manfen5.com 满分网 查看答案
某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图所示:
(1)月通话为100分钟时,应交话费______元;
(2)当x≥100时,求y与x之间的函数关系式;
(3)月通话为280分钟时,应交话费多少元?

manfen5.com 满分网 查看答案
如图,某人在D处测得山顶C的仰角为30°,向前走200米来到山脚A处,测得山坡AC的坡度为i=1:0.5,求山的高度.(不计测角仪的高度,manfen5.com 满分网≈1.73,结果保留整数)

manfen5.com 满分网 查看答案
如图所示一次函数y=x+b与反比例函数manfen5.com 满分网在第一象限的图象交于点B,且点B的横坐标为1,过点B作y轴的垂线,C为垂足,若S△BCO=manfen5.com 满分网,求一次函数和反比例函数的解析式.

manfen5.com 满分网 查看答案
为了配合数学课程改革,某县举行了初三年级“数学知识应用”竞赛(满分100分).为了解初三年级参赛的1万名学生竞赛成绩情况,现从中随机抽取部分学生的竞赛成绩作为一个样本,整理后分成5组,绘制出频数分布直方图.已知图中从左到右的第一、第二、第四、第五小组的频数分别是50,100,200,25,其中第二小组的频率是0.2.
(1)求第三小组的频数,并补全频数分布直方图;
(2)抽取的样本中,学生竞赛成绩的中位数落在第几小组?
(3)若成绩在90分以上(含90分)的学生获优胜奖,请你估计全县初三参赛学生中获优胜奖的人数.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.