如图,已知一次函数y=
x+3与函数y=
x+
的图象交于点A,且与x轴、y轴交于点B,点D,y=
x+
的图象与x轴、y轴交于点C,E,
(1)求点C、点D、点A坐标;
(2)能否说明△ECO与△BDO相似吗?
(3)动点P从点C出发沿射线CA以每秒4厘米的速度运动.同时,动点Q从点D出发沿射线DB运动,且始终保持OP⊥OQ.设运动时间为t秒(t>0).
①△PCO与△DQO相似吗?例说明理由;
②求动点Q的运动速度;
③设△APQ的面积为S(平方厘米),求S与t的函数关系式.
考点分析:
相关试题推荐
正方形ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是______,∠AFB=∠______
(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM
2+DN
2=MN
2.
查看答案
仁寿某商场服装柜在销售中发现:“爱童”牌童装平均每天可售出20件,每件盈利40元.为迎接“元旦”节,商场决定采取适当的降价措施扩大销量,增加盈利,减少库存.经市场调查发现:如果每件童装每降价4元,则平均每天就可多售出8件.
(1)要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?
(2)如果你是老总,请算一下每件童装应降价多少元可使一天的盈利最大?最大盈利是多少?
查看答案
如图抛物线y=ax
2-5x+4a与x轴相交于点A、B,且过点C(5,4).
(1)求a的值和该抛物线顶点P的坐标.
(2)该抛物线与y轴的交点为D,则四边形ABCD为______.
(3)将此抛物线沿x轴向左平移3个单位,再向上平移2个单位,请写出平移后图象所对应的函数关系式.
查看答案
为保卫祖国的南海海疆,我人民解放军海军在相距30海里的A、B两地设立观测站(海岸线是过A、B的直线).按国际惯例,海岸线以外12海里范围内均为我国领海,外国船只除特许外,不得私自进入我国领海.某日,观测员发现一外国船只行驶至P处,在A观测站测得∠BAP=60°,同时在B观测站测得∠ABP=45°.问此时是否需要向此未经特许的船只发出警告,命令其退出我国领海?(
)
查看答案
如图,AB为半圆O的直径,点C在半圆O上,过点O作BC的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC.
(1)求证:AD是半圆O的切线;
(2)若BC=2,CE=
,求AD的长.
查看答案