满分5 > 初中数学试题 >

如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对...

如图,在平面直角坐标系中,四边形OABC是矩形,点B的坐标为(4,3).平行于对角线AC的直线m从原点O出发,沿x轴正方向以每秒1个单位长度的速度运动,设直线m与矩形OABC的两边分别交于点M、N,直线m运动的时间为t(秒).
(1)点A的坐标是______,点C的坐标是______
(2)当t=______秒或______秒时,MN=manfen5.com 满分网AC;
(3)设△OMN的面积为S,求S与t的函数关系式;
(4)探求(3)中得到的函数S有没有最大值?若有,求出最大值;若没有,要说明理由.

manfen5.com 满分网
(1)根据B点的坐标即可求出A、C的坐标. (2)当MN=AC时,有两种情况,①MN是△OAC的中位线,此时OM=OA=2,因此t=2; ②当MN是△ABC的中位线时,OM=OA=6,因此t=6; (3)本题要分类进行讨论: ①当直线m在AC下方或与AC重合时,即当0<t≤4时,可根据△OMN∽△OAC,用两三角形的相似比求出面积比,即可得出S与t的函数关系式. ②当直线m在AC上方时,即当4<t<8时,可用矩形OABC的面积-三角形BMN的面积-三角形OCN的面积-三角形OAM的面积来求得.(也可过O作直线m的垂线设垂足为F,那么在直角三角形OMF中,可根据OD的长和∠ODE的正弦值求出OF的长,求MN的方法一样). (4)根据(3)得出的函数的性质和自变量的取值范围即可求出面积S的最大值及对应的t的值. 【解析】 (1)(4,0),(0,3); (2)当MN=AC时,有两种情况, ①MN是△OAC的中位线,此时OM=OA=2,因此t=2; ②当MN是△ABC的中位线时, ∴AM=AB=,OA=4, ∴AD===2 ∴OD=OA+AD=4+2=6,因此t=6; (3)当0<t≤4时,OM=t ∵由△OMN∽△OAC,得=, ∴ON=,S=t2 当4<t<8时, 如图,∵OD=t, ∴AD=t-4 方法一: 由△DAM∽△AOC,可得AM=(t-4) ∴BM=6- 由△BMN∽△BAC,可得BN=BM=8-t ∴CN=t-4 S=矩形OABC的面积-Rt△OAM的面积-Rt△MBN的面积-Rt△NCO的面积 =12-(t-4)-(8-t)(6-)-=t2+3t 方法二: 易知四边形ADNC是平行四边形, ∴CN=AD=t-4,BN=8-t. 由△BMN∽△BAC,可得BM=BN=6-, ∴AM=(t-4) 以下同方法一. (4)有最大值. 方法一: 当0<t≤4时, ∵抛物线S=t2的开口向上,在对称轴t=0的右边,S随t的增大而增大 ∴当t=4时,S可取到最大值×42=6;(11分) 当4<t<8时, ∵抛物线S=t2+3t的开口向下,它的顶点是(4,6), ∴S<6. 综上,当t=4时,S有最大值6. 方法二: ∵S= ∴当0<t<8时,画出S与t的函数关系图象 如图所示. 显然,当t=4时,S有最大值6.
复制答案
考点分析:
相关试题推荐
如图,一次函数y=kx+b图象与反比例函数y=manfen5.com 满分网的图象在第一象限内交于A(1,2)、B两点,与x轴交于N点,且OA⊥AB.
(1)求反比例函数解析式.
(2)求N点坐标,并求一次函数解析式.
(3)过点B作BP⊥AB交x轴于P,求S△BPN

manfen5.com 满分网 查看答案
请你根据下面的对话,求甲、乙两件服装成本各多少元?
manfen5.com 满分网
查看答案
张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:
张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘).
王伟的方案是:从一副扑克牌中取出方块1、2、3,将它们背面朝上重新洗牌后,从中摸出一张,记录下牌面数字后放回,洗匀后再摸出一张.若摸出两张牌面数字之和为奇数,则张红得到入场劵;若摸出两张牌面数字之和为偶数,则王伟得到入场券.
(1)计算张红获得入场券的概率,并说明张红的方案是否公平;
(2)用树状图(或列表法)列举王伟设计方案的所有情况,计算王伟获得入场券的概率,并说明王伟的方案是否公平?

manfen5.com 满分网 查看答案
如图,一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米.如果梯子的顶端下滑1米,那么梯子的底端滑动了多少米?

manfen5.com 满分网 查看答案
已知:如图,D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别是E、F,且BF=CE.
(1)求证:△ABC是等腰三角形;
(2)当∠A=90°时,试判断四边形AFDE是怎样的四边形,证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.