满分5 > 初中数学试题 >

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC...

如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD丄PA,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若DC+DA=6,⊙O的直径为10,求AB的长度.

manfen5.com 满分网
(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线; (2)过O作OF⊥AB,则OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长. (1)证明:连接OC ∵OA=OC ∴∠OCA=∠OAC ∵AC平分∠PAE ∴∠DAC=∠CAO ∴∠DAC=∠OCA ∴PB∥OC ∵CD⊥PA ∴CD⊥OC,CO为⊙O半径, ∴CD为⊙O的切线; (2)【解析】 过O作OF⊥AB,垂足为F, ∴∠OCD=∠CDA=∠OFD=90°, ∴四边形DCOF为矩形, ∴OC=FD,OF=CD. ∵DC+DA=6, 设AD=x,则OF=CD=6-x, ∵⊙O的直径为10, ∴DF=OC=5, ∴AF=5-x, 在Rt△AOF中,由勾股定理得AF2+OF2=OA2. 即(5-x)2+(6-x)2=25, 化简得x2-11x+18=0, 解得x1=2,x2=9. ∵CD=6-x大于0,故x=9舍去, ∴x=2, 从而AD=2,AF=5-2=3, ∵OF⊥AB,由垂径定理知,F为AB的中点, ∴AB=2AF=6.
复制答案
考点分析:
相关试题推荐
如图:直线y=ax+b分别与x轴,y轴相交于A、B两点,与双曲线manfen5.com 满分网,(x>0)相交于点P,PC⊥x轴于点C,点A的坐标为(-4,0),点B的坐标为(0,2),PC=3.
(1)求双曲线对应的函数关系式;
(2)若点Q在双曲线上,且QH⊥x轴于点H,△QCH与△AOB相似,请求出点Q的坐标.

manfen5.com 满分网 查看答案
陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”
(1)王老师为什么说他搞错了?试用方程的知识给予解释;
(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?
查看答案
小明想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道l上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道l向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A、B之间的距离.

manfen5.com 满分网 查看答案
如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.manfen5.com 满分网
(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?
(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.
查看答案
如图,在平行四边形ABCD中,BE平分∠ABD交AD于点E,DF平分∠BDC交BC于点F.
(1)求证:BE=DF.
(2)若AB=BD,试判断四边形EBFD的形状,并说明理由.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.