满分5 > 初中数学试题 >

如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点...

如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.
(1)求证:△ABE≌△ACE;
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.

manfen5.com 满分网
由题意可知三角形三线合一,结合SAS可得△ABE≌△ACE.四边形ABEC相邻两边AB=AC,只需要证明四边形ABEC是平行四边形的条件,当AE=2AD(或AD=DE或DE=AE)时,根据对角线互相平分,可得四边形是平行四边形. (1)证明:∵AB=AC, ∴△ABC是等腰三角形, 又∵点D为BC的中点, ∴∠BAE=∠CAE(三线合一), 在△ABE和△ACE中, ∵, ∴△ABE≌△ACE(SAS). (2)【解析】 当AE=2AD(或AD=DE或DE=AE)时,四边形ABEC是菱形 理由如下: ∵AE=2AD,∴AD=DE, 又∵点D为BC中点, ∴BD=CD, ∴四边形ABEC为平行四边形, ∵AB=AC, ∴四边形ABEC为菱形.
复制答案
考点分析:
相关试题推荐
(1)计算:(manfen5.com 满分网-2-|-5|+tan45°+(π-3)
(2)解不等式组:manfen5.com 满分网
查看答案
已知:如图,直线MN交⊙O于A、B两点,AC是直径,AD平分∠CAM交⊙O于点D,过点D作DE⊥MN,垂足为E.∠ADE=30°,⊙O的半径为2,图中阴影部分的面积为   
manfen5.com 满分网 查看答案
“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.有一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正形区域(含边)的概率是    查看答案
水果店进了某种水果1000千克,进价为7元/千克,售价为11元/千克,售出一半后,为尽快售完,准备打折出售,如果要使总利润为3450元,那么余下的水果应按原出售价打    折出售. 查看答案
已知扇形的半径为6cm,扇形的弧长为πcm,用它围成圆锥的底面直径是    cm,扇形的圆心角为    °. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.