满分5 > 初中数学试题 >

矩形纸片ABCD中,AB=5,AD=4,将纸片折叠,使点B落在边CD上的B′处,...

矩形纸片ABCD中,AB=5,AD=4,将纸片折叠,使点B落在边CD上的B′处,折痕为AE、在折痕AE上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为   
manfen5.com 满分网
由翻折的性质知,BP=B′P,而要点P到CD的距离等于PB,则该垂线段必为PB′,故有PB′⊥CD,延长AE交DC的延长线于点F,由于DF∥AB,则∠F=∠BAE=∠B′AE,所以B′F=B′A=AB=5,而B′P∥AD,利用平行线分线段成比例定理(或相似三角形的性质)即可求得B′P的长,由此得解. 【解析】 方法1:根据折叠的性质知:BP=PB′,若点P到CD的距离等于PB,则此距离必与B′P相同,所以该距离必为PB′.延长AE交DC的延长线于F. 由题意知:AB=AB′=5,∠BAE=∠B′AE; 在Rt△AB′D中,AB′=5,AD=4,故B′D=3; 由于DF∥AB,则∠F=∠BAE, 又∵∠BAE=∠B′AE, ∴∠F=∠B′AE, ∴FB′=AB′=5; ∵PB′⊥CD,AD⊥CD, ∴PB′∥AD, ∴,即, 解得PB′=2.5; 方法2:过B′做CD的垂线交AE于P点,连接PB,易于说明,P即是符合题意的. 在Rt△AB′D中,AB′=5,AD=4,故B′D=3 所以CB′=2 设BE=a,CE=4-a 又EB′=EB=a, 在Rt△ECB′中 (4-a)2+22=a2 解得a=2.5, 连接BB′,由对称性可知,BG=B′G,EP⊥BB′, BE∥B′P,∴△BEG≌△B′PG,∴BE=B′P, ∴四边形BPB′E为平行四边形,又BE=EB′ 所以四边形BPB′E是菱形 所以PB′=BE=a=2.5 故所求距离为2.5. 故此相等的距离为2.5.
复制答案
考点分析:
相关试题推荐
如图点P为弦AB上一点,连接OP,过P作PC⊥PO,PC交⊙O于点C,若AP=4,PB=2,则PC的长为   
manfen5.com 满分网 查看答案
如图,如果从半径为3cm的圆形纸片剪去manfen5.com 满分网圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的体积是    cm3
manfen5.com 满分网 查看答案
如图,在△ABC中,D、E分别AB、AC边上的点,DE∥BC.若AD=3,DB=6,DE=1.2,则BC=   
manfen5.com 满分网 查看答案
反比例函数y=manfen5.com 满分网(k≠0)的图象经过点(2,5),若点(1,n)在图象上,则n=    查看答案
一个密码箱的密码,每个数位上的数都是从0到9的自然数,若要使不知道密码的人一次就拨对密码的概率小于manfen5.com 满分网,则密码的位数至少需要    位. 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.