考点分析:
相关试题推荐
如图,在平面直角坐标系xOy中,二次函数y=
x
2+bx+c的图象经过点A(-3,6),并与x轴交于点B(-1,0)和点C,顶点为P.
(1)求二次函数的解析式;
(2)设D为线段OC上的一点,若∠DPC=∠BAC,求点D的坐标;
(3)在(2)的条件下,若点M在抛物线y=
x
2+bx+c上,点N在y轴上,要使以M、N、B、D为顶点的四边形是平行四边形,这样的点M、N是否存在?若存在,求出所有满足条件的点M的坐标;若不存在,说明理由.
查看答案
已知:如图,D为线段AB上一点(不与点A、B重合),CD⊥AB,且CD=AB,AE⊥AB,BF⊥AB,且AE=BD,BF=AD.
(1)如图1,当点D恰是AB的中点时,请你猜想并证明∠ACE与∠BCF的数量关系;
(2)如图2,当点D不是AB的中点时,你在(1)中所得的结论是否发生变化,写出你的猜想并证明;
(3)若∠ACB=α,直接写出∠ECF的度数(用含α的式子表示).
查看答案
如图,直线AB经过第一象限,分别与x轴、y轴交于A、B两点,P为线段AB上任意一点(不与A、B重合),过点P分别向x轴、y轴作垂线,垂足分别为C、D.设OC=x,四边形OCPD的面积为S.
(1)若已知A(4,0),B(0,6),求S与x之间的函数关系式;
(2)若已知A(a,0),B(0,b),且当x=
时,S有最大值
,求直线AB的解析式;
(3)在(2)的条件下,在直线AB上有一点M,且点M到x轴、y轴的距离相等,点N在过M点的反比例函数图象上,且△OAN是直角三角形,求点N的坐标.
查看答案
阅读下列材料:
问题:如图1,P为正方形ABCD内一点,且PA:PB:PC=1:2:3,求∠APB的度数.
小娜同学的想法是:不妨设PA=1,PB=2,PC=3,设法把PA、PB、PC相对集中,于是他将△BCP绕点B顺时针旋转90°得到△BAE(如图2),然后连接PE,问题得以解决.
请你回答:图2中∠APB的度数为______.
请你参考小娜同学的思路,解决下列问题:
如图3,P是等边三角形ABC内一点,已知∠APB=115°,∠BPC=125°.
(1)在图3中画出并指明以PA、PB、PC的长度为三边长的一个三角形(保留画图痕迹);
(2)求出以PA、PB、PC的长度为三边长的三角形的各内角的度数分别等于______.
查看答案
阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校倡导学生读书,下面的表格是学生阅读课外书籍情况统计表,图1是该校初中三个年级学生人数分布的扇形统计图,其中八年级学生人数为204人,请你根据图表中提供的信息,解答下列问题:
图书种类 | 频数 | 频率 |
科普常识 | 840 | b |
名人传记 | 816 | 0.34 |
中外名著 | a | 0.25 |
其他 | 144 | 0.06 |
(1)求该校八年级学生的人数占全校学生总人数的百分比;
(2)求表中a,b的值;
(3)求该校学生平均每人读多少本课外书?
查看答案