如图,在平面直角坐标系中,O是坐标原点,直线y=3x+9与x轴、y轴分别交于A、C两点,抛物线
经过A、C两点,与x轴的另一个交点为点B,动点P从点A出发沿AB以每秒3个单位长度的速度向点B运动,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C运动,动点N从点C出发沿CA以每秒
个单位长度的速度向点A运动,点P、Q、N同时出发、同时停止,设运动时间为t(0<t<5)秒.
(1)求抛物线的解析式;
(2)判断△ABC的形状;
(3)以OC为直径的⊙O′与BC交于点M,求当t为何值时,PM与⊙O′相切?请说明理由;
(4)在点P、Q、N运动的过程中,是否存在△NCQ为直角三角形的情形?若存在,求出相应的t值;若不存在,请说明理由.
考点分析:
相关试题推荐
有一批物资,由甲汽车从M地运往距M地180千米的N地.而甲车在驶往N地的途中发生故障,司机马上通知N地,并立即自查和维修.N地在接到通知后第12分钟时,立即派乙车前往接应.经过抢修,甲车在乙车出发第8分钟时修复并继续按原速行驶,两车在途中相遇.为了确保物资能准时运到N地,随行人员将物资全部转移到乙车上(装卸货物时间和乙车掉头时间忽略不计),乙车按原速原路返回,并按预计时间准时到达N地.下图是甲、乙两车离N地的距离y(千米)与时间x(小时)之间的函数图象.请结合图象信息解答下列问题:
(1)请直接在坐标系中的______内填上数据;
(2)求线段CD的函数解析式,并写出自变量x的取值范围;
(3)求乙车的行驶速度.
查看答案
已知一次函数y
1=2x,二次函数y
2=x
2+1.
(Ⅰ)根据表中给出的x的值,计算对应的函数值y
1、y
2,并填在表格中:
(Ⅱ)观察第(Ⅰ)问表中有关的数据,证明如下结论:在实数范围内,对于x的同一个值,这两个函数所对应的函数值y
1≤y
2均成立;
(Ⅲ)试问,是否存在二次函数y
3=ax
2+bx+c,其图象经过点(-5,2),且在实数范围内,对于x的同一个值,这三个函数所对应的函数值y
1≤y
3≤y
2均成立?若存在,求出函数y
3的解析式;若不存在,请说明理由.
查看答案
图1为一锐角是30°的直角三角尺,其框为透明塑料制成(内、外直角三角形对应边互相平行).将三角尺移向直径为4cm的⊙O,它的内Rt△ABC的斜边AB恰好等于⊙O的直径,它的外Rt△A′B′C′的直角边A′C′恰好与⊙O相切(如图2),求直角三角尺的宽.
查看答案
如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45°降为30°,已知AC=5米,点D、B、C在同一水平地面上.
(1)求改善后滑滑板AD的长;
(2)若滑滑板的正前方有3米长的空地就能保证安全,原滑滑板的前方有7米长的空地,象这样改善是否可行?说明理由.
查看答案
如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E.DF平分∠ADC交BC于F.
(1)求证:△ABE≌△CDF;
(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.
查看答案