如图1,把两个全等的三角板ABC、EFG叠放在一起,使三角板EFG的直角边FG经过三角板ABC的直角顶点C,垂直AB于G,其中∠B=∠F=30°,斜边AB和EF均为4.现将三角板EFG由图1所示的位置绕G点沿逆时针方向旋转α(0<α<90°),如图2,EG交AC于点K,GF交BC于点H.在旋转过程中,请你解决以下问题:
(1)GH:GK的值是否变化?证明你的结论;
(2)连接HK,求证:KH∥EF;
(3)设AK=x,请问是否存在x,使△CKH的面积最大?若存在,求x的值;若不存在,请说明理由.
考点分析:
相关试题推荐
我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.
(1)求a的值;某户居民上月用水8吨,应收水费多少元;
(2)求b的值,并写出当x>10时,y与x之间的函数关系式;
(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?
查看答案
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在射线DE上,并且EF=AC.
(1)求证:AF=CE;
(2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论;
(3)四边形ACEF有可能是正方形吗?为什么?
查看答案
阅读下列材料:求函数
的最大值.
【解析】
将原函数转化成x的一元二次方程,得
.
∵x为实数,∴△=
=-y+4≥0,∴y≤4.因此,y的最大值为4.
根据材料给你的启示,求函数
的最小值.
查看答案
如图,AB为半圆O的直径,点C在半圆O上,过点O作BC的平行线交AC于点E,交过点A的直线于点D,且∠D=∠BAC.
(1)求证:AD是半圆O的切线;
(2)若BC=2,CE=
,求AD的长.
查看答案
在改革开放30年纪念活动中,某校学生会就同学们对我国改革开放30年所取得的辉煌成就的了解程度进行了随机抽样调查,并将调查结果绘制成如图所示的统计图的一部分.
根据统计图中的信息,解答下列问题:
(1)本次抽样调查的样本容量是______.调查中“了解很少”的学生占______%;
(2)补全条形统计图;
(3)若全校共有学生1300人,那么该校约有多少名学生“很了解”我国改革开放30年来取得的辉煌成就?
查看答案