用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt△BCE就是拼成的一个图形.
(1)用这两部分纸片除了可以拼成图2中的Rt△BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.
(2)若利用这两部分纸片拼成的Rt△BCE是等腰直角三角形,设原矩形纸片中的边AB和BC的长分别为a厘米、b厘米,且a、b恰好是关于x的方程x
2-(m-1)x+m+1=0的两个实数根,试求出原矩形纸片的面积.
考点分析:
相关试题推荐
如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A
1,在网格中画出平移后得到的△A
1B
1C
1;
(2)把△A
1B
1C
1绕点A
1按逆时针方向旋转90°,在网格中画出旋转后的△A
1B
2C
2;
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.
查看答案
如图,点O是△ABC的内切圆的圆心,∠BAC=80°,求∠BOC的度数.
查看答案
给出三个多项式X=2a
2+3ab+b
2,Y=3a
2+3ab,Z=a
2+ab,请你任选两个进行加(或减)法运算,再将结果分解因式.
查看答案
如图,直线l:
经过点M(0,
),一组抛物线的顶点B
1(1,y
1),B
2(2,y
2),B
3(3,y
3)…B
n(n,y
n)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A
1(x
1,0),A
2(x
2,0),A
3(x
3,0)…,A
n+1(x
n+1,0)(n为正整数),设x
1=d(0<d<1)若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则我们把这种抛物线就称为:“美丽抛物线”.则当d(0<d<1)的大小变化时美丽抛物线相应的d的值是
.
查看答案
如图,正方形ABCD的边长为2,将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动.如果点Q从点A出发,沿图中所示方向按A→B→C→D→A滑动到A止,同时点R从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为
.
查看答案