满分5 > 初中数学试题 >

如图在平面直角坐标系xoy中,正方形OABC的边长为2厘米,点A、C分别在y轴的...

如图在平面直角坐标系xoy中,正方形OABC的边长为2厘米,点A、C分别在y轴的负半轴和x轴的正半轴上.抛物线y=ax2+bx+c经过点A,B和点D(4,manfen5.com 满分网
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以2厘米/秒的速度向点B移动,同时点Q由B点开始沿BC边以1厘米/秒的速度向点C移动.若P、Q中有一点到达终点,则另一点也停止运动,设P、Q两点移动的时间为t秒,S=PQ2(厘米2)写出S与t之间的函数关系式,并写出t的取值范围,当t为何值时,S最小;
(3)当s取最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
(4)在抛物线的对称轴上求出点M,使得M到D,A距离之差最大?写出点M的坐标.

manfen5.com 满分网
(1)首先根据题意确定A、B、C、D点的坐标值,因为抛物线y=ax2+bx+c经过点A,B和点 D(4,).将A、B、D点的坐标值代入抛物线联立解得a、b、c的值. (2)首先根据题意确定P、Q点的坐标,再根据两点间的距离公式求得PQ2用t表示的代数式,并得到t的取值范围.将PQ2的利用配方法求得PQ2取最小值时的t的取值. (3)由(2)中得到t的取值,确定出P、Q点的坐标值.分别就①若以BQ为对角线,②若PB为对角线两种情况. 根据平行四边形的P、Q、B三点求得R点的坐标值.并验证是否在抛物线上. (4)首先根据题意确定对称轴为x=1、及A、D点的坐标值.因为A、D两点位于对称轴x=1的两边,故作D点关于x=1的对称点D',连接AD′,直线AD′与直线x=1的交点即为所求之. 【解析】 (1)由题意得A(0,-2)、B(2,-2)、C(2,0), ∵抛物线y=ax2+bx+c经过点A,B和点 D(4,), ∴, 解得c=-2、a=、b=, ∴抛物线的解析式为y=. (2)由题意知P点的坐标为(2t,-2)、Q点的坐标为(2,t-2), 则PQ2=(2t-2)2+(-2-t+2)2=5t2-8t+4=5(t-)2+, ∴S=PQ2=5t2-8t+4(0≤t≤1), 当t=时,S最小. (3)由(1)(2)知,P(,-2)、Q(2,-)、B(2,-2), ①若以BQ为对角线, ∵平行四边形对角线的交点平分两对角线. ∴R点的坐标为, t=时,R, 在y=中, 当x=时,y=. ∴R在抛物线上. ②若PB为对角线,当t=时,, 在y=中,当x=时, y=≠, ∴不在抛物线上, 综上可知,抛物线上存在使以P、B、Q、R为顶点的四边形是平行四边形. (4)由(1)知,该抛物线的对称轴为x=1, ∵D、A点位于对称轴x=1的两侧, 故作D点关于x=1的对称点D′(-2,) 则直线AD′的解析式为y=, 即y=-x-2 当x=1时,y= ∴M(1,).
复制答案
考点分析:
相关试题推荐
如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.
(1)求EC:CF的值;
(2)延长EF交正方形外角平分线CP于点P(如图2),试判断AE与EP的大小关系,并说明理由;
(3)若将“边长为5的正方形”改为“BC长为m(m>2),AB长为n(n>2),的矩形”,其他条件不变,试判断AE与EP的大小关系,并说明理由.
manfen5.com 满分网
查看答案
绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:
类别冰箱彩电
进价(元/台)2 3201 900
售价(元/台)2 4201 980
(1)按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?
(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台,且冰箱的数量不少于彩电数量的manfen5.com 满分网
①请你帮助该商场设计相应的进货方案;
②哪种进货方案商场获得利润最大(利润=售价-进价),最大利润是多少?
查看答案
联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了上面的两个统计图.
其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类;
B:能将垃圾放到规定的地方,但不会考虑垃圾的分类;
C:偶尔会将垃圾放到规定的地方;
D:随手乱扔垃圾.
manfen5.com 满分网
根据以上信息回答下列问题:
(1)该校课外活动小组共调查了多少人?并补全上面的条形统计图;
(2)如果该校共有师生2400人,那么随手乱扔垃圾的约有多少人?
查看答案
用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt△BCE就是拼成的一个图形.
(1)用这两部分纸片除了可以拼成图2中的Rt△BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.
(2)若利用这两部分纸片拼成的Rt△BCE是等腰直角三角形,设原矩形纸片中的边AB和BC的长分别为a厘米、b厘米,且a、b恰好是关于x的方程x2-(m-1)x+m+1=0的两个实数根,试求出原矩形纸片的面积.
manfen5.com 满分网
查看答案
如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.