满分5 > 初中数学试题 >

如图所示,在直角梯形OABC,CB,OA,∠OAB=90°,点O为坐标原点,点A...

如图所示,在直角梯形OABC,CB,OA,∠OAB=90°,点O为坐标原点,点A在x半轴上,对角线OB,AC相交于点M,OA=AB=4,OA=2CB.
(1)线段OB的长为______

manfen5.com 满分网
(1)易证得△OAB是等腰Rt△,已知了直角边的长,即可根据直角三角形的性质求出斜边OB的长;已知了OA=2BC,即可得到C点的横坐标,而B、C的纵坐标相同,由此可求出C点的坐标; (2)易证得△BCM∽△OAM,且OA=2BC,根据相似三角形的对应边成比例可得AM=2CM;由此可证得△OAM的面积是△OCM的2倍,即△OCM的面积是△OAC的,因此只需求出△OAC的面积即可; (3)用待定系数法即可求出经过O、A、C三点的函数解析式; (4)根据(3)得到的抛物线的解析式,即可求出其对称轴方程;若以A,O,F,E四点为顶点的四边形为平行四边形,应分成两种情况考虑: ①E点在x轴的下方,F在x轴的上方;此时四边形OFAE的对角线OA、EF互相平分,四边形OFAE是平行四边形,此时F与C点重合; ②E、F同时在x轴下方;此时四边形OAFE(或OAEF)以OA为边,根据平行四边形的对边互相平行且相等知:OA=EF,由此可求出F点的横坐标,将其代入抛物线的解析式中,即可求得F点的坐标. 【解析】 (1)在Rt△OAB中,OA=AB=4,所以△AOB是等腰直角三角形, ∴OB===4,B(4,4); ∵OA=2BC,则C点位于OA的垂直平分线上, ∴C(2,4); (2)在直角梯形OABC中,OA=AB=4,∠OAB=90°, ∵CB∥OA, ∴△OAM∽△BCM,(3分) 又∵OA=2BC, ∴AM=2CM,CM=AC,(4分) 所以S△OCM=S△OAC=××4×4=.(5分) (注:另有其它解法同样可得结果,正确得本小题满分.) (3)设抛物线的解析式为y=ax2+bx+c(a≠0), 由抛物线的图象经过点O(0,0),A(4,0),C(2,4), 所以,(6分) 解这个方程组得a=-1,b=4,c=0,(7分) 所以抛物线的解析式为: y=-x2+4x;(8分) (4)∵抛物线y=-x2+4x的对称轴是CD,x=2, ①当点E在x轴的上方时,CE和OA互相平分则可知四边形OEAC为平行四边形,此时点F和点C重合, 点F的坐标即为点F(2,4);(9分) ②当点E在x轴的下方,点F在对称轴x=2的右侧,存在平行四边形AOEF,OA∥EF,且OA=EF, 此时点F的横坐标为6, 将x=6代入y=-x2+4x,可得y=-12. 所以F(6,-12). (11分) 同理,点F在对称轴x=2的左侧,存在平行四边形OAEF,OA∥FE,且OA=FE, 此时点F的横坐标为-2, 将x=-2代入y=-x2+4x,可得y=-12, 所以F(-2,-12). (12分) 综上所述,点F的坐标为(2,4),(6,-12),(-2,-12).(12分)
复制答案
考点分析:
相关试题推荐
如图,C为以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.
(1)求证:AC平分∠BAD;
(2)若CD=3,AC=3manfen5.com 满分网,求⊙O的半径长.

manfen5.com 满分网 查看答案
随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.
(1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
查看答案
甲、乙两人玩“石头、剪子、布”游戏,游戏规则为:双方都做出“石头”、“剪子”、“布”三种手势(如图)中的一种,规定“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,手势相同,不分胜负.若甲、乙两人都随意做出三种手势中的一种,则两人一次性分出胜负的概率是多少?请用列表或画树状图的方法加以说明.

manfen5.com 满分网 查看答案
如图所示,小杨在处州公园的A处正面观测电子屏幕,测得屏幕上端C处的仰角为27°,接着他正对电子屏幕方向前进7m到达B处,又测得该屏幕上端C处的仰角为45°.已知电子屏幕的下端离开地面距离DE为4m,小杨的眼睛离地面1.60m,电子屏幕的上端与墙体的顶端平齐.求电子屏幕上端与下端之间的距离CD(结果精确到0.1m,参考数据:manfen5.com 满分网≈1.41,sin27°≈0.45,cos27°≈0.89,tan27°≈0.51).

manfen5.com 满分网 查看答案
2012年5月13日为母亲节,某校结合学生实际,开展了形式多样的感恩教育活动.下面图1,图2分别是该校调查部分学生是否知道母亲生日情况的扇形统计图和频数分布直方图.
manfen5.com 满分网
根据上图信息,解答下列问题:
(1)被调查的学生中,记不清母亲生日情况的学生有______人;
(2)本次被调查的学生总人数有______,并补全频数分布直方图2;
(3)若这所学校共有学生2400人,已知被调查的学生中,知道母亲生日的女生人数是男生人数的2倍,请你通过计算估计该校知道母亲生日的女生和男生分别有多少人?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.