满分5 > 初中数学试题 >

在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,...

在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A1B1C.
(1)如图1,当AB∥CB1时,设A1B1与BC相交于D.证明:△A1CD是等边三角形;
(2)如图2,连接AA1、BB1,设△ACA1和△BCB1的面积分别为S1、S2.求证:S1:S2=1:3;
(3)如图3,设AC中点为E,A1B1中点为P,AC=a,连接EP,当θ=______°时,EP长度最大,最大值为______
manfen5.com 满分网
(1)当AB∥CB1时,∠BCB1=∠B=∠B1=30°,则∠A1CD=90°-∠BCB1=60°,∠A1DC=∠BCB1+∠B1=60°,可证:△A1CD是等边三角形; (2)由旋转的性质可证△ACA1∽△BCB1,利用相似三角形的面积比等于相似比的平方求解; (3)连接CP,当E、C、P三点共线时,EP最长,当△ABC旋转到△A1B2C的位置时,此时θ=∠ACA1=120°,EP=EC+CP=a+a=a.根据图形求出此时的旋转角及EP的长. (1)证明:如图,∵AB∥CB1, ∴∠BCB1=∠B=∠B1=30°, ∴∠A1CD=90°-∠BCB1=60°,∠A1DC=∠BCB1+∠B1=60°, ∴△A1CD是等边三角形; (2)证明:由旋转的性质可知AC=CA1,∠ACA1=∠BCB1,BC=CB1, ∴△ACA1∽△BCB1, ∴S1:S2=AC2:BC2=12:2=1:3; (3)【解析】 如图,连接CP,当△ABC旋转到△A1B2C的位置时, 此时θ=∠ACA1=120°,EP=EC+CP=a+a=a. 故答案为:120,a.
复制答案
考点分析:
相关试题推荐
阅读下面材料:
小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90°.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.
manfen5.com 满分网
小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2).
请你回答:图2中△BCE的面积等于______
请你尝试用平移、旋转、翻折的方法,解决下列问题:
如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.
(1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于______
查看答案
如图,一次函数的图象与反比例函数manfen5.com 满分网的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<-1时,一次函数值大于反比例函数值,当x>-1时,一次函数值小于反比例函数值.
(1)求一次函数的解析式;
(2)设函数y2=manfen5.com 满分网的图象与manfen5.com 满分网的图象关于y轴对称,在y2=manfen5.com 满分网的图象上取一点P(P点的横坐标大于2),过P作PQ丄x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

manfen5.com 满分网 查看答案
在一个不透明的盒子里,装有三个分别标有数字1,2,3的小球它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)写出(x,y)的所有可能出现的结果;
(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数y=manfen5.com 满分网 的图象上的概率.
查看答案
学校以1班学生的地理测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成两幅统计图,结合图中信息填空:
(1)D级学生的人数占全班人数的百分比为______
(2)扇形统计图中C级所在扇形圆心角度数为______
(3)该班学生地理测试成绩的中位数落在______级内;
(4)若该校共有1500人,则估计该校地理成绩得A级的学生约有______人.

manfen5.com 满分网 查看答案
先化简分式:(a-manfen5.com 满分网)÷manfen5.com 满分网manfen5.com 满分网,再从-3、manfen5.com 满分网-3、2、-2中选一个你喜欢的数作为a的值代入求值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.