满分5 > 初中数学试题 >

附加题:已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,...

附加题:已知:如图,正比例函数y=ax的图象与反比例函数y=manfen5.com 满分网的图象交于点A(3,2)
(1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;
(3)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MN∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.

manfen5.com 满分网
(1)将A(3,2)分别代入y=,y=ax中,得ak的值,进而可得正比例函数和反比例函数的表达式; (2)观察图象,得在第一象限内,当0<x<3时,反比例函数的图象在正比例函数的上方;故反比例函数的值大于正比例函数的值; (3)有S△OMB=S△OAC=×|k|=3,可得S矩形OBDC为12;即OC•OB=12;进而可得mn的值,故可得BM与DM的大小;比较可得其大小关系. 【解析】 (1)将A(3,2)分别代入y=,y=ax中,得:2=,3a=2 ∴k=6,a=(2分) ∴反比例函数的表达式为:y=(3分) 正比例函数的表达式为y=x(4分) (2)观察图象,得在第一象限内,当0<x<3时,反比例函数的值大于正比例函数的值.(6分) (3)BM=DM(7分) 理由:∵MN∥x轴,AC∥y轴, ∴四边形OCDB是平行四边形, ∵x轴⊥y轴, ∴▱OCDB是矩形. M和A都在双曲线y=上, ∴BM×OB=6,OC×AC=6, ∴S△OMB=S△OAC=×|k|=3,又S四边形OADM=6, ∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12, 即OC•OB=12 ∵OC=3 ∴OB=4(8分) 即n=4 ∴m= ∴MB=,MD=3-= ∴MB=MD(9分).
复制答案
考点分析:
相关试题推荐
几何模型:
条件:如下图,A、B是直线l同旁的两个定点.
manfen5.com 满分网
问题:在直线l上确定一点P,使PA+PB的值最小.
方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小(不必证明).
模型应用:
(1)如图1,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是______
(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;
(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.
查看答案
“知识改变命运,科技繁荣祖国”.下图为我市某校2011年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:
manfen5.com 满分网
(1)该校参加车模、建模比赛的人数分别是______人和______人;
(2)该校参加航模比赛的总人数是______ 人,空模所在扇形的圆心角的度数是______,并把条形统计图补充完整;
(3)从全市中小学参加航模比赛选手中随机抽取80人,已知有32人获奖,且各类模型获奖比例与参赛人数比例一致;若今年我市中小学参加航模比赛人数共有2400人,请你估算今年参加“空模比赛”这一项目的获奖人数大约是多少人?
查看答案
如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.

manfen5.com 满分网 查看答案
先化简分式(manfen5.com 满分网-manfen5.com 满分网)÷manfen5.com 满分网,再从不等式组manfen5.com 满分网的解集中取一个非负整数值代入,求原分式的值.
查看答案
二次函数manfen5.com 满分网的图象如图所示,点A位于坐标原点,点A1,A2,A3,…,A2011在y轴的正半轴上,点B1,B2,B3,…,B2011在二次函数manfen5.com 满分网位于第一象限的图象上,若△AB1A1,△A1B2A2,△A2B3A3,…,△A2010B2011A2011都为等边三角形,则△A2010B2011A2011的边长=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.