满分5 > 初中数学试题 >

巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y...

巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的 对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的 右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等 (即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标t是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等 (即这四条线段能构成平行四边形)?请说明理由.
manfen5.com 满分网
(1)本题需先求出抛物线与x轴交点坐标和对称轴,再根据∠OAC=60°得出OC,从而求出a. (2)本题需先分两种情况进行讨论,当P是EF上任意一点时,可得PC>PB,从而得出PB≠PA,PB≠PC,PB≠PD,即可求出线段PA、PB、PC、PD不能构成平行四边形. (3)本题需先得出PA=PB,再由PC=PD,列出关于t与a的方程,从而得出a的值,即可求出答案. 【解析】 (1)令y=0,由a(x2-6x+8)=0, 解得x1=2,x2=4; 令x=0,解得y=8a, ∴点 A、B、C的坐标分别是(2,0)、(4,0)、(0,8a), 该抛物线对称轴为直线x=3, ∴OA=2, 如图①,设抛物线对称轴与x轴的交点为M,则AM=1, 由题意得:O′A=OA=2, ∴O′A=2AM, ∴∠O′AM=60°, ∴∠OAC=∠O′AC=60°, ∴OC=2,即8a=2, ∴a=; (2)若点P是边EF或边FG上的任意一点,结论同样成立, ①如图②,设P是边EF上的任意一点,连接PM, ∵点E(4,4)、F(4,3)与点B(4,0)在一直线上,点C在y轴上, ∴PB<4,PC≥4, ∴PC>PB, 又∵PD>PM>PB,PA>PM>PB, ∴PB≠PA,PB≠PC,PB≠PD, ∴此时线段PA、PB、PC、PD不能构成平行四边形, ②设P是边FG上的任意一点(不与点G重合), ∵点F的坐标是(4,3),点G的坐标是(5,3), ∴FB=3,GB=, ∴3≤PB, ∵PC≥4, ∴PC>PB, 又∵PD>PM>PB,PA>PM>PB, ∴PB≠PA,PB≠PC,PB≠PD, ∴此时线段PA、PB、PC、PD也不能构成平行四边形; (3)存在一个正数a,使得线段PA、PB、PC、PD能构成一个平行四边形, 如图③,∵点A、B是抛物线与x轴交点,点P在抛物线对称轴上, ∴PA=PB, ∴当PC=PD时,线段PA、PB、PC、PD能构成一个平行四边形, ∵点C的坐标是(0,8a),点D的坐标是(3,-a), 点P的坐标是(3,t), ∴PC2=32+(t-8a)2,PD2=(t+a)2, 由PC=PD得PC2=PD2, ∴32+(t-8a)2=(t+a)2, 整理得:7a2-2ta+1=0有两个不相等的实数根, ∴a==, ∴a=或a=, ∵t>3, ∴显然a=或a=,满足题意, ∴当t是一个大于3的常数时,存在两个正数a=或a=,使得线段PA、PB、PC、PD能构成一个平行四边形.
复制答案
考点分析:
相关试题推荐
如图,在△ABC中,点D是BC上一点,∠B=∠DAC=45°.
(1)如图1,当∠C=45°时,请写出图中一对相等的线段;______
(2)如图2,若BD=2,BA=manfen5.com 满分网,求AD的长及△ACD的面积.
manfen5.com 满分网
查看答案
已知一元二次方程x2+ax+a-2=0.
(1)求证:不论a为何实数,此方程总有两个不相等的实数根;
(2)设a<0,当二次函数y=x2+ax+a-2的图象与x轴的两个交点的距离为manfen5.com 满分网时,求出此二次函数的解析式;
(3)在(2)的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为manfen5.com 满分网?若存在求出P点坐标,若不存在请说明理由.
查看答案
已知:如图1,矩形ABCD中,AB=6,BC=8,E、F、G、H分别是AB、BC、CD、DA四条边上的点(且不与各边顶点重合),设m=EF+FG+GH+HE,探索m的取值范围.
(1)如图2,当E、F、G、H分别是AB、BC、CD、DA四边中点时,m=______
(2)为了解决这个问题,小贝同学采用轴对称的方法,如图3,将整个图形以CD为对称轴翻折,接着再连续翻折两次,
从而找到解决问题的途径,求得m的取值范围.①请在图3中补全小贝同学翻折后的图形;②m的取值范围是______
manfen5.com 满分网
查看答案
如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点F,点E为manfen5.com 满分网的中点,连接BE交AC于点M,AD为△ABC的角平分线,且AD⊥BE,垂足为点H.
(1)求证:AB是半圆O的切线;
(2)若AB=3,BC=4,求BE的长.

manfen5.com 满分网 查看答案
如图,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中点.
(1)求证:△MDC是等边三角形;
(2)将△MDC绕点M旋转,当MD(即MD′)与AB交于一点E,MC(即MC′)同时与AD交于一点F时,点E,F和点A构成△AEF.试探究△AEF的周长是否存在最小值?如果不存在,请说明理由;如果存在,请计算出△AEF周长的最小值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.