满分5 > 初中数学试题 >

已知抛物线y=ax2+bx+c与x轴交于A、B点(A点在B点的左边),与y轴交点...

已知抛物线y=ax2+bx+c与x轴交于A、B点(A点在B点的左边),与y轴交点C的纵坐标为2.若方程manfen5.com 满分网的两根为x1=1,x2=-2.
(1)求此抛物线的解析式;
(2)若抛物线的顶点为M,点P为线段AM上一动点,过P点作x轴的垂线,垂足为H点,设OH的长为t,四边形BCPH的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围;
(3)将△BOC补成矩形,使△BOC的两个顶点B、C成为矩形的一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标______

manfen5.com 满分网
(1)已知抛物线过与y轴的交点的纵坐标为2,可得出c=2.根据题中给出的方程以及方程的解,可得出a,b以及a,c的比例关系,根据c的值,即可求出a,b的值,由此可求出抛物线的解析式. (2)本题可根据抛物线的解析式得出各点的坐标,然后根据四边形BCPH的面积=梯形PHOC的面积+△BOC的面积,可得出关于S,t的函数关系式. (3)本题已告诉了O点在矩形的BC边的对边上,那么过矩形未知两顶点的直线的解析式为y=-2x(直线BC的解析式是y=-2x+2,由于矩形的对边互相平行,因此这条直线的斜率也是-2).而矩形中过B点的BC的邻边的解析式为y=x+2(两直线垂直,斜率的积为-1).由此可求出一个矩形未知顶点的坐标,同理可求出另一点的坐标. 【解析】 (1)由题意得: , 解得, 即抛物线的解析式为:y=-x2-x+2. (2)根据(1)中抛物线的解析式可求得:A(-2,0),B(1,0),C(0,2),M(-,). 如图设抛物线的对称轴与x轴交于N点, ∵PH∥MN, ∴, ∵OH=t,AH=2-t,MN=,AN=OA-ON=, ∴PH=AH•MN÷AN=, ∴S=S梯形PHOC+S△BOC=(PH+OC)•OH+OB•OC=-(). (3)(-)().
复制答案
考点分析:
相关试题推荐
如图,AB是半圆O上的直径,E是manfen5.com 满分网的中点,OE交弦BC于点D,过点C作⊙O切线交OE的延长线于点F.已知BC=8,DE=2.
(1)求⊙O的半径;
(2)求CF的长;
(3)求tan∠BAD的值.

manfen5.com 满分网 查看答案
如图,设在矩形ABCD中,点O为矩形对角线的交点,∠BAD的平分线AE交BC于点E,交OB于点F,已知AD=3,AB=manfen5.com 满分网
(1)求证:△AOB为等边三角形;
(2)求BF的长.

manfen5.com 满分网 查看答案
如图,AC是某市环城路的一段,AE、BF、CD都是南北方向的街道,其与环城路AC的交叉路口分别是A、B、C经测量,花卉世界D位于点A的北偏东45°方向,点B的北偏东30°方向上,AB=2km,∠DAC=15°.
(1)求∠ADB的大小;
(2)求B、D之间的距离;
(3)求C、D之间的距离.

manfen5.com 满分网 查看答案
小刚和小明两位同学玩一种游戏.游戏规则为:两人各执“象、虎、鼠”三张牌,同时各出一张牌定胜负,其中象胜虎、虎胜鼠、鼠胜象,若两人所出牌相同,则为平局.例如,小刚出象牌,小明出虎牌,则小刚胜;又如,两人同时出象牌,则两人平局.
(1)一次出牌小刚出“象”牌的概率是多少;
(2)如果用A,B,C分别表示小刚的象、虎、鼠三张牌,用A1,B1,C1分别表示小明的象、虎、鼠三张牌,那么一次出牌小刚胜小明的概率是多少?用列表法或画树状图(树形图)法加以说明.
(3)你认为这个游戏对小刚和小明公平吗?为什么?
manfen5.com 满分网
查看答案
如图,已知A(-4,n),B(2,-4)是一次函数y=kx+b的图象和反比例函数y=manfen5.com 满分网的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求方程kx+b-manfen5.com 满分网=0的解(请直接写出答案);
(4)求不等式kx+b-manfen5.com 满分网<0的解集(请直接写出答案).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.