满分5 > 初中数学试题 >

根据以下10个乘积,回答问题: 11×29; 12×28; 13×27; 14×...

根据以下10个乘积,回答问题:
11×29;  12×28;   13×27;   14×26;   15×25;
16×24;  17×23;   18×22;   19×21;   20×20.
(1)试将以上各乘积分别写成一个“□2-○2”(两数平方差)的形式,并写出其中一个的思考过程;
(2)将以上10个乘积按照从小到大的顺序排列起来;
(3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)
(1)根据要求求出两数的平均数,再写成平方差的形式即可. (2)减去的数越大,乘积就越小,据此规律填写即可. (3)根据排列的顺序可得,两数相差越大,积越小. 【解析】 (1)11×29=202-92;12×28=202-82;13×27=202-72; 14×26=202-62;15×25=202-52;16×24=202-42; 17×23=202-32;18×22=202-22;19×21=202-12; 20×20=202-02    …(4分) 例如,11×29;假设11×29=□2-○2, 因为□2-○2=(□+○)(□-○); 所以,可以令□-○=11,□+○=29. 解得,□=20,○=9.故11×29=202-92. (或11×29=(20-9)(20+9)=202-92 (2)这10个乘积按照从小到大的顺序依次是:11×29<12×28<13×27<14×26<15×25<16×24<17×23<18×22<19×21<20×20 (3)①若a+b=40,a,b是自然数,则ab≤202=400. ②若a+b=40,则ab≤202=400.     …(8分) ③若a+b=m,a,b是自然数,则ab≤. ④若a+b=m,则ab≤. ⑤若a,b的和为定值,则ab的最大值为. ⑥若a1+b1=a2+b2=a3+b3=…=an+bn=40.且 |a1-b1|≥|a2-b2|≥|a3-b3|≥…≥|an-bn|, 则 a1b1≤a2b2≤a3b3≤…≤anbn.       …(10分) ⑦若a1+b1=a2+b2=a3+b3=…=an+bn=m.且 |a1-b1|≥|a2-b2|≥|a3-b3|≥…≥|an-bn|, 则a1b1≤a2b2≤a3b3≤…≤anbn. ⑧若a+b=m, a,b差的绝对值越大,则它们的积就越小. 说明:给出结论①或②之一的得(1分);给出结论③、④或⑤之一的得(2分); 给出结论⑥、⑦或⑧之一的得(3分).
复制答案
考点分析:
相关试题推荐
已知:如图,在△ABC中,D为AB边上一点,∠A=36°,AC=BC,AC2=AB•AD.
(1)试说明:△ADC和△BDC都是等腰三角形;(2)若AB=1,求AC的值;
(3)试构造一个等腰梯形,该梯形连同它的两条对角线,得到了8个三角形,要求构造出的图形中有尽可能多的等腰三角形.(标明各角的度数)

manfen5.com 满分网 查看答案
在平面直角坐标系中,△AOB的位置如图所示,已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).
(1)求点B的坐标;
(2)求过A,O,B三点的抛物线的解析式;
(3)设点B关于抛物线的对称轴l的对称点为B1,求△AB1B的面积.

manfen5.com 满分网 查看答案
某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图1中的折线表示的是市场日销售量与上市时间的关系;图2中的折线表示的是每件产品A的销售利润与上市时间的关系.
(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;
(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?
manfen5.com 满分网
查看答案
已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

manfen5.com 满分网 查看答案
将某雷达测速区监测到的一组汽车的时速数据整理,得到其频数及频率如表(未完成):
manfen5.com 满分网
注:30~40为时速大于等于30千米而小于40千米,其他类同.
(1)请你把表中的数据填写完整;
(2)补全频数分布直方图;
(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.