满分5 > 初中数学试题 >

在平面直角坐标系xOy中,抛物线y=-x2+bx+c与x轴交于A、B两点(点A在...

在平面直角坐标系xOy中,抛物线y=-x2+bx+c与x轴交于A、B两点(点A在点B的左侧),过点A的直线y=kx+1交抛物线于点C(2,3).
(1)求直线AC及抛物线的解析式;
(2)若直线y=kx+1与抛物线的对称轴交于点E,以点E为中心将直线y=kx+1顺时针旋转90°得到直线l,设直线l与y轴的交点为P,求△APE的面积;
(3)若G为抛物线上一点,是否存在x轴上的点F,使以B、E、F、G为顶点的四边形为平行四边形?若存在,直接写出点F的坐标;若不存在,请说明理由.

manfen5.com 满分网
本题是一次函数,二次函数的综合题,充分利用两者之间图象的联系,解析式中待定系数的个数,先求一次函数解析式,再求二次函数解析式,根据题目的要求,对二次函数进行运用.在坐标系中求图形面积,可以充分利用图形的各顶点坐标的数值,确定图形的底、高,可把图形分割成几个规则图形的和或者差. 【解析】 (1)∵点C(2,3)在直线y=kx+1上, ∴2k+1=3. 解得k=1. ∴直线AC的解析式为y=x+1. ∵点A在x轴上, ∴A(-1,0). ∵抛物线y=-x2+bx+c过点A、C, ∴ 解得 ∴抛物线的解析式为y=-x2+2x+3. (2)由y=-x2+2x+3=-(x-1)2+4, 可得抛物线的对称轴为x=1,B(3,0). ∴E(1,2). 根据题意,知点A旋转到点B处,直线l过点B、E. 设直线l的解析式为y=mx+n. 将B、E的坐标代入y=mx+n中, 联立可得m=-1,n=3. ∴直线l的解析式为y=-x+3. ∴P(0,3). 过点E作ED⊥x轴于点D. ∴S△PAE=S△PAB-S△EAB=AB•PO-AB•ED=×4×(3-2)=2. (3)存在,点F的坐标分别为(3-,0),(3+,0),(-1-,0)(-1+,0).
复制答案
考点分析:
相关试题推荐
北京时间2010年4月14日,青海省玉树藏族自治州玉树县发生7.1级地震,为了支援灾区学校,某工厂计划生产A,B两种型号的学生桌椅500套,以解决灾区学校1250名学生的学习问题.已知一套A型桌椅(一桌两椅可坐2人)需木料0.5x3,一套B型桌椅(一桌三椅可坐3人)需木料0.7m3,工厂现有库存木料302m3
(1)有多少种生产方案?
(2)现要把生产的全部桌椅运往灾区,已知每套A型桌椅的生产成本为100元,运费2元;每套B型桌椅的生产成本为120元,运费4元,求总费用y(元)与生产A型桌椅x(套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)
(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.
查看答案
如图,AB是⊙O的直径,CB是⊙O的弦,D是manfen5.com 满分网的中点,过点D作直线于BC垂直,交BC延长线于E点,且交BA延长线于F点.
(1)求证:EF是⊙O的切线;
(2)若manfen5.com 满分网,BE=6,求⊙O的半径.

manfen5.com 满分网 查看答案
已知:关于x的方程kx2+(2k-3)x+k-3=0有两个不相等实数根(k<0).
(1)用含k的式子表示方程的两实数根;
(2)设方程的两实数根分别是x1,x2(其中x1>x2),且manfen5.com 满分网,求k的值.
查看答案
典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:
manfen5.com 满分网
请根据以上不完整的统计图提供的信息,解答下列问题:
(1)典典同学共调查了______名居民的年龄,扇形统计图中a=______,b=______
(2)补全条形统计图;
(3)若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.
查看答案
如图,已知△ABC的三个顶点的坐标分别为A(-2,2)、B(-5,0)、C(-1,0).
(1)请直接写出点A关于y轴对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°得到△A1B1C1,再将△A1B1C1以C1为位似中心,放大2倍得到△A2B2C1,请画出△A1B1C1和△A2B2C1,并写出一个点A2的坐标.(只画一个△A2B2C1即可)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.