如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=
.设直线AC与直线x=4交于点E.
(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;
(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求△CMN面积的最大值.
考点分析:
相关试题推荐
在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距
km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.
查看答案
学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项.且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学?
查看答案
小刚参观上海世博会,由于仅有一天的时间,他上午从A-中国馆、B-日本馆、C-美国馆中任意选择一处参观,下午从D-韩国馆、E-英国馆、F-德国馆中任意选择一处参观.
(1)请用画树状图或列表的方法,分析并写出小刚所有可能的参观方式(用字母表示即可);
(2)求小刚上午和下午恰好都参观亚洲国家展馆的概率.
查看答案
(1)解方程:
;
(2)解不等式组:
.
查看答案