满分5 > 初中数学试题 >

如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=.设直...

如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=manfen5.com 满分网.设直线AC与直线x=4交于点E.
(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;
(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求△CMN面积的最大值.

manfen5.com 满分网
(1)设直线x=4与x轴的交点为F,易证得△ABC∽△AFE,根据相似三角形得到的比例线段即可求出EF的长,也就得到了E点的坐标;可用待定系数法求出抛物线的解析式,然后将E点坐标代入其中进行判断即可; (2)过M作y轴的平行线,交直线CN于P,交x轴于Q;根据抛物线的解析式可求出N点的坐标,进而可求出直线CN的解析式,设出Q点的坐标,即可根据抛物线和直线的解析式求出MP的长;以MP为底,C、N的横坐标差的绝对值为高即可得到△CMN的面积,由此可求出关于△CMN的面积与Q点横坐标的函数关系式,根据函数的性质即可得到△CMN的最大面积. 【解析】 (1)设抛物线的函数关系式为:y=a(x-4)2+m, ∵抛物线过C与原点O, ∴, 解得:, ∴所求抛物线的函数关系式为:y=-(x-4)2+, 设直线AC的函数关系式为y=kx+b, , 解得:. ∴直线AC的函数关系式为:y=x+, ∴点E的坐标为(4,) ∴此抛物线过E点. (2)过M作MQ∥y轴,交x轴于Q,交直线CN于P; 易知:N(8,0),C(2,2); 可得直线CN的解析式为y=-x+; 设点Q的坐标为(m,0),则P(m,-m+),M(m,-m2+m); ∴MP=-m2+m-(-m+)=-m2+m-; ∴S=S△CMN=S△CPM+S△MNP=MP•|xM-xC|+MP•|xN-xM|=MP•|xN-xC|=×(-m2+m-)×6=-m2+5m-8; 即S=-(m-5)2+(2<m<8); ∵2<5<8, ∴当m=5时,Smax=; 即△CMN的最大面积为.
复制答案
考点分析:
相关试题推荐
在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距manfen5.com 满分网km的C处.
(1)求该轮船航行的速度(保留精确结果);
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.

manfen5.com 满分网 查看答案
学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项.且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
manfen5.com 满分网
(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学?
查看答案
小刚参观上海世博会,由于仅有一天的时间,他上午从A-中国馆、B-日本馆、C-美国馆中任意选择一处参观,下午从D-韩国馆、E-英国馆、F-德国馆中任意选择一处参观.
(1)请用画树状图或列表的方法,分析并写出小刚所有可能的参观方式(用字母表示即可);
(2)求小刚上午和下午恰好都参观亚洲国家展馆的概率.
查看答案
(1)解方程:manfen5.com 满分网
(2)解不等式组:manfen5.com 满分网
查看答案
计算:(1)manfen5.com 满分网
(2)manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.