满分5 > 初中数学试题 >

我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况...

我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼,有关成本、销售情况如下表:
养殖种类成本(万元/亩)销售额(万元/亩)
甲鱼2.43
桂鱼22.5
(1)2010年,王大爷养殖甲鱼20亩,桂鱼10亩,求王大爷这一年共收益多少万元?(收益=销售额-成本)
(2)2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2010年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?
(3)已知甲鱼每亩需要饲料500㎏,桂鱼每亩需要饲料700㎏,根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每次装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需要全部饲料比原计划减少了2次,求王大爷原定的运输车辆每次可装载饲料多少㎏?
(1)根据已知列算式求解; (2)先设养殖甲鱼x亩,则养殖桂鱼(30-x)亩列不等式,求出x的取值,再表示出王大爷可获得收益为y万元函数关系式求最大值; (3)设大爷原定的运输车辆每次可装载饲料a㎏,结合(2)列分式方程求解. 【解析】 (1)2010年王大爷的收益为: 20×(3-2.4)+10×(2.5-2) =17(万元), 答:王大爷这一年共收益17万元. (2)设养殖甲鱼x亩,则养殖桂鱼(30-x)亩 则题意得2.4x+2(30-x)≤70 解得x≤25, 又设王大爷可获得收益为y万元, 则y=0.6x+0.5(30-x), 即y=x+15. ∵函数值y随x的增大而增大, ∴当x=25时,可获得最大收益. 答:要获得最大收益,应养殖甲鱼25亩,桂鱼5亩. (3)设大爷原定的运输车辆每次可装载饲料a㎏ 由(2)得,共需要饲料为500×25+700×5=16000(㎏), 根据题意得-=2, 解得a=4000, 把a=4000代入原方程公分母得,2a=2×4000=8000≠0, 故a=4000是原方程的解. 答:王大爷原定的运输车辆每次可装载饲料4000㎏.
复制答案
考点分析:
相关试题推荐
如图,在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.
(1)在图中作出⊙O(不写作法,保留作图痕迹);
(2)求证:BC为⊙O的切线;
(3)若AC=3,tanB=manfen5.com 满分网,求⊙O的半径长.

manfen5.com 满分网 查看答案
小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=manfen5.com 满分网,sinA′=manfen5.com 满分网
(1)求此重物在水平方向移动的距离BC;
(2)求此重物在竖直方向移动的距离B′C.(结果保留根号)

manfen5.com 满分网 查看答案
如图1,抛物线manfen5.com 满分网与x轴交于A、C两点,与y轴交于B点,与直线y=kx+b交于A、D两点.
(1)直接写出A、C两点坐标和直线AD的解析式;
(2)如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点P(m,n)落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?
manfen5.com 满分网
查看答案
计算:|-2|-2sin30°+manfen5.com 满分网+manfen5.com 满分网
查看答案
长为1,宽为a的矩形纸片(manfen5.com 满分网),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.