满分5 > 初中数学试题 >

如图,已知O(0,0)、A(4,0)、B(4,3).动点P从O点出发,以每秒3个...

如图,已知O(0,0)、A(4,0)、B(4,3).动点P从O点出发,以每秒3个单位的速度,沿△OAB的边0A、AB、B0作匀速运动;动直线l从AB位置出发,以每秒1个单位的速度向x轴负方向作匀速平移运动.若它们同时出发,运动的时间为t秒,当点P运动到O时,它们都停止运动.
(1)当P在线段OA上运动时,求直线l与以P为圆心、1为半径的圆相交时t的取值范围;
(2)当P在线段AB上运动时,设直线l分别与OA、OB交于C、D,试问:四边形CPBD是否可能为菱形?若能,求出此时t的值;若不能,请说明理由,并说明如何改变直线l的出发时间,使得四边形CPBD会是菱形.

manfen5.com 满分网
(1)根据点P与直线l的距离d<1分为点P在直线l的左边和右边,分别表示距离,列不等式组求范围; (2)四边形CPBD不可能为菱形.依题意可得AC=t,OC=4-t,PA=3t-4,PB=7-3t,由CD∥AB,利用相似比表示CD,由菱形的性质得CD=PB可求t的值,又当四边形CPBD为菱形时,PC=PB=7-3t,把t代入PA2+AC2,PC2中,看结果是否相等如果结果不相等,就不能构成菱形.设直线l比P点迟a秒出发,则AC=t-a,OC=4-t+a,再利用平行线表示CD,根据CD=PB,PC∥OB,得相似比,分别表示t,列方程求a即可. 【解析】 (1)当P在线段OA上运动时,OP=3t,AC=t, ⊙P与直线l相交时,, 解得<t<; (2)四边形CPBD不可能为菱形. 依题意,得AC=t,OC=4-t,PA=3t-4,PB=7-3t, ∵CD∥AB, ∴=,即=, 解得CD=(4-t), 由菱形的性质,得CD=PB, 即(4-t)=7-3t, 解得t=, 又当四边形CPBD为菱形时,PC=PB=7-3t,当t=时, 代入PA2+AC2=(3t-4)2+t2=,PC2=(7-3t)2=, ∴PA2+AC2≠PC2,就不能构成菱形. 设直线l比P点迟a秒出发,则AC=t-a,OC=4-t+a, 由CD∥AB,得CD=(4-t+a),由CD=PB,得(4-t+a)=7-3t, 解得t=, PC∥OB,PC=CD,得=,即AB•PC=OB•AP, 3×(4-t+a)=5×(3t-4), 解得t=, 则=, 解得a=,即直线l比P点迟秒出发.
复制答案
考点分析:
相关试题推荐
如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.
(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;
(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.
manfen5.com 满分网
查看答案
张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).
(1)求y与x之间的函数关系式;
(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?

manfen5.com 满分网 查看答案
如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.

manfen5.com 满分网 查看答案
某区共有甲、乙、丙三所高中,所有高二学生参加了一次数学测试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四类情况之一:A--概念错误;B--计算错误;C--解答基本正确,但不完整;D--解答完全正确.各校出现这四类情况的人数分别占本校高二学生数的百分比如下表所示.
ABCD
甲校(%)2.7516.2560.7520.25
乙校(%)3.7522.5041.2532.50
丙校(%)12.506.2522.5058.75
已知甲校高二有400名学生,这三所学校高二学生人数的扇形统计图如图.
根据以上信息,解答下列问题:
(1)求全区高二学生总数;
(2)求全区解答完全正确的学生数占全区高二学生总数的百分比m(精确到0.01%);
(3)请你对表中三校的数据进行对比分析,给丙校高二数学老师提一个值得关注的问题,并说明理由.

manfen5.com 满分网 查看答案
一不透明的袋子中装有4个球,它们除了上面分别标有的号码l、2、3、4不同外,其余均相同.将小球搅匀,并从袋中任意取出一球后放回;再将小球搅匀,并从袋中再任意取出一球.求第二次取出球的号码比第一次的大的概率.(请用“画树状图”或“列表”的方法给出分析过程,并写出结果)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.