如图1,在正方形ABCD中,E、F分别是BC,CD上的点,且∠EAF=45度.则有结论EF=BE+FD成立;
(1)如图2,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的一半,那么结论EF=BE+FD是否仍然成立?若成立,请证明;不成立,请说明理由.
(2)若将(1)中的条件改为:在四边形ABCD中,AB=AD,∠B+∠D=180°,延长BC到点E,延长CD到点F,使得∠EAF仍然是∠BAD的一半,则结论EF=BE+FD是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明.
考点分析:
相关试题推荐
同学们,我们曾经研究过n×n的正方形网格,得到了网格中正方形的总数的表达式为1
2+2
2+3
2+…+n
2.但n为100时,应如何计算正方形的具体个数呢?下面我们就一起来探究并解决这个问题.首先,通过探究我们已经知道0×1+1×2+2×3+…+(n-l)×n
=
n(n+l)(n-l)时,我们可以这样做:
(1)观察并猜想:
1
2+2
2=(1+0)×1+(1+1)×2=l+0×1+2+1×2=(1+2)+(0×1+1×2)
1
2+2
2+3
2=(1+0)×1+(1+1)×2+(l+2)×3
=1+0×1+2+1×2+3+2×3
=(1+2+3)+(0×1+1×2+2×3)
1
2+2
2+3
2+4
2=(1+0)×1+(1+1)×2+(l+2)×3+______
=1+0×1+2+1×2+3+2×3+______
=(1+2+3+4)+(______)
…
(2)归纳结论:
1
2+2
2+3
2+…+n
2=(1+0)×1+(1+1)×2+(1+2)×3+…[1+(n-l)]n
=1+0×1+2+1×2+3+2×3+…+n+(n-1)×n
=(______)+[______]
=______+______
=
×______
(3 )实践应用:
通过以上探究过程,我们就可以算出当n为100时,正方形网格中正方形的总个数是______.
查看答案
如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.
(1)求证:DE∥BF;
(2)若∠G=90°,求证:四边形DEBF是菱形.
查看答案
扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.
(1)毎位考生有______种选择方案;
(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提酲:各种方案用A、B、C、…或①、②、③、…等符号来代表可简化解答过程)
查看答案
一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.
查看答案
列方程(组)解应用题:
小明乘坐火车从某地到上海去参观世博园,已知此次行程为2160千米,城际直达动车组的平均时速是特快列车的1.6倍.小明购买火车票时发现,乘坐动车组比乘坐特快列车少用6小时,求小明乘坐动车组到上海需要的时间.
查看答案