满分5 > 初中数学试题 >

如图,已知AB是⊙O的直径,点E在⊙O上,过点E的直线EF与AB的延长线交于点F...

如图,已知AB是⊙O的直径,点E在⊙O上,过点E的直线EF与AB的延长线交于点F,AC⊥EF,垂足为C,AE平分∠FAC.
(1)求证:CF是⊙O的切线;
(2)∠F=30°时,求manfen5.com 满分网的值.

manfen5.com 满分网
(1)连接OE,根据角平分线的性质和等边对等角可得出OE∥AC,则∠OEF=∠ACF,由AC⊥EF,则∠OEF=∠ACF=90°,从而得出OE⊥CF,即CF是⊙O的切线; (2)由OE∥AC,则△OFE∽△AFC,根据相似三角形的面积之比等于相似比的平方,从而得出的值. (1)证明:连接OE, ∵AE平分∠FAC, ∴∠CAE=∠OAE, 又∵OA=OE,∠OEA=∠OAE,∠CAE=∠OEA, ∴OE∥AC, ∴∠OEF=∠ACF, 又∵AC⊥EF, ∴∠OEF=∠ACF=90°, ∴OE⊥CF, 又∵点E在⊙O上, ∴CF是⊙O的切线; (2)【解析】 ∵∠OEF=90°,∠F=30°, ∴OF=2OE 又OA=OE, ∴AF=3OE, 又∵OE∥AC, ∴△OFE∽△AFC, ∴==, ∴=, ∴=.
复制答案
考点分析:
相关试题推荐
小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=manfen5.com 满分网,sinA′=manfen5.com 满分网
(1)求此重物在水平方向移动的距离BC;
(2)求此重物在竖直方向移动的距离B′C.(结果保留根号)

manfen5.com 满分网 查看答案
A市有某种型号的农用车50辆,B市有40辆,现要将这些农用车全部调往C、D两县,C县需要该种农用车42辆,D县需要48辆,从A市运往C、D两县农用车的费用分别为每辆300元和150元,从B市运往C、D两县农用车的费用分别为每辆200元和250元.
(1)设从A市运往C县的农用车为x辆,此次调运总费为y元,求y与x的函数关系式,并写出自变量x的取值范围;
(2)若此次调运的总费用不超过16000元,有哪几种调运方案?哪种方案的费用最小?并求出最小费用?
查看答案
如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.
(1)求证:EB=GD;
(2)判断EB与GD的位置关系,并说明理由;
(3)若AB=2,AG=manfen5.com 满分网,求EB的长.

manfen5.com 满分网 查看答案
观察下列算式:
manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网
manfen5.com 满分网
(1)根据以上规律计算:manfen5.com 满分网(注意计算技巧哦!)
(2)请你猜想:manfen5.com 满分网的结果(用n的式子表示).
查看答案
如图,是二次函数 y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是( )
manfen5.com 满分网
A.①②
B.②③
C.①③
D.①②③④
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.