满分5 > 初中数学试题 >

如图,平面直角坐标系xOy中,点A的坐标为(-2,2),点B的坐标为(6,6),...

如图,平面直角坐标系xOy中,点A的坐标为(-2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.
(1)求点E的坐标;
(2)求抛物线的函数解析式;
(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;
(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.

manfen5.com 满分网
(1)根据A、B两点坐标求直线AB的解析式,令x=0,可求E点坐标; (2)设抛物线解析式为y=ax2+bx+c,将A(-2,2),B(6,6),O(0,0)三点坐标代入,列方程组求a、b、c的值即可; (3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m,与抛物线解析式联立,得出关于x的一元二次方程,当△=0时,△BON面积最大,由此可求m的值及N点的坐标; (4)根据三角形相似的性质得到BO:OA=OP:AN=BP:ON,然后根据勾股定理分别计算出BO=6,OA=2,AN=,ON=,这样可求出OP=,BP=,设P点坐标为(x,y),再利用勾股定理得到关于x,y的方程组,解方程组即可. 【解析】 (1)设直线AB解析式为y=kx+b, 将A(-2,2),B(6,6)代入,得,解得, ∴y=x+3,令x=0, ∴E(0,3); (2)设抛物线解析式为y=ax2+b′x+c, 将A(-2,2),B(6,6),O(0,0)三点坐标代入,得,解得, ∴y=x2-x (3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m, 联立,得x2-6x-4m=0,当△=36+16m=0时,过N点与OB平行的直线与抛物线有唯一的公共点,则点N到BO的距离最大,所以△BON面积最大, 解得m=-,x=3,y=,即N(3,); 此时△BON面积=×6×6-(+6)×3-××3=; (4)过点A作AS⊥GQ于S, ∵A(-2,2),B(6,6),N(3,), ∵∠AOE=∠OAS=∠BOH=45°, OG=3,NG=,NS=,AS=5, 在Rt△SAN和Rt△NOG中, ∴tan∠SAN=tan∠NOG=, ∴∠SAN=∠NOG, ∴∠OAS-∠SAN=∠BOG-∠NOG, ∴∠OAN=∠NOB, ∴ON的延长线上存在一点P,使得△BOP∽△OAN, ∵A(-2,2),N(3,), ∵△BOP与△OAN相似(点B、O、P分别与点O、A、N对应),即△BOP∽△OAN, ∴BO:OA=OP:AN=BP:ON 又∵A(-2,2),N(3,),B(6,6), ∴BO=6,OA=2,AN=,ON=, ∴OP=,BP=, 设P点坐标为(4x,x), ∴16x2+x2=()2, 解得x=,4x=15, ∵P、P′关于直线y=x轴对称, ∴P点坐标为(15,)或(,15).
复制答案
考点分析:
相关试题推荐
张经理到老王的果园里一次性采购一种水果,他俩商定:张经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).
(1)求y与x之间的函数关系式;
(2)已知老王种植水果的成本是2 800元/吨,那么张经理的采购量为多少时,老王在这次买卖中所获的利润w最大?最大利润是多少?

manfen5.com 满分网 查看答案
在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.
(1)写出点M坐标的所有可能的结果;
(2)求点M在直线y=x上的概率;
(3)求点M的横坐标与纵坐标之和是偶数的概率.
查看答案
为庆祝建党90周年,某校团委计划在“七•一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲.为此提供代号为A、B、C、D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图.请根据图①,图②所提供的信息,解答下列问题:
(1)本次抽样调查的学生有______名,其中选择曲目代号为A的学生占抽样总数的百分比是______%;
(2)请将图②补充完整;
(3)若该校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生选择此必唱歌曲?(要有解答过程)manfen5.com 满分网
查看答案
如图,已知AB是⊙O的直径,点E在⊙O上,过点E的直线EF与AB的延长线交于点F,AC⊥EF,垂足为C,AE平分∠FAC.
(1)求证:CF是⊙O的切线;
(2)∠F=30°时,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=manfen5.com 满分网,sinA′=manfen5.com 满分网
(1)求此重物在水平方向移动的距离BC;
(2)求此重物在竖直方向移动的距离B′C.(结果保留根号)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.