满分5 > 初中数学试题 >

已知:如图,直角梯形ABCD中,AD∥BC,∠A=90°,BC=CD=10,si...

已知:如图,直角梯形ABCD中,AD∥BC,∠A=90°,BC=CD=10,sinC=manfen5.com 满分网
(1)求梯形ABCD的面积;
(2)点E,F分别是BC,CD上的动点,点E从点B出发向点C运动,点F从点C出发向点D运动,若两点均以每秒1个单位的速度同时出发,连接EF.求△EFC面积的最大值,并说明此时E,F的位置.

manfen5.com 满分网
(1)本题的关键是求出上底和梯形的高,可通过构建直角三角形求解.过D作DM⊥BC于M,那么再直角三角形DMC中,可根据CD的长和∠C的正弦值求出梯形的高,进而可求出CM的长,根据AD=BC-CM也就求出了上底的长,由此可根据梯形的面积公式求出其面积. (2)本题要先求出三角形EFC的面积与时间的函数关系式,可根据E,F的速度用时间t表示出CE,CF的长,△CEF中,可以用CE作底边,以CF•sinC作高,可据此得出三角形CEF的面积和时间t的函数关系式,根据函数的性质即可求出EFC的面积最大值和对应的时间t的值,然后根据时间t确定出E、F的具体位置. 【解析】 (1)过点D作DM⊥BC,垂足为M, 在Rt△DMC中,DM=CD•sinC=10×=8 CM===6 ∴BM=BC-CM=10-6=4, ∴AD=4 ∴S梯形ABCD=(AD+BC)DM=(4+10)×8=56; (2)设运动时间为x秒,则有BE=CF=x,EC=10-x 过点F作FN⊥BC,垂足为N,在Rt△FNC中,FN=CF•sinC=x ∴S△EFC=EC•FN=(10-x)×x=-x2+4x 当时,S△EFC=-×52+4×5=10 即△EFC面积的最大值为10, 此时,点E,F分别在BC,CD的中点处.
复制答案
考点分析:
相关试题推荐
某校准备组织290名学生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.
(1)设租用甲种汽车x辆,请你帮助学校设计所有可能的租车方案;
(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.
查看答案
一个不透明的盒子中放有四张分别写有数字1,2,3,4的红色卡片和三张分别写有数字1,2,3的蓝色卡片,卡片除颜色和数字外完全相同.
(1)从中任意抽取一张卡片,求该卡片上写有数字1的概率;
(2)将3张蓝色卡片取出后放入另外一个不透明的盒子内,然后在两个盒子内各任意抽取一张卡片,以红色卡片上的数字作为十位数,蓝色卡片上的数字作为个位数组成一个两位数,求这个两位数大于22的概率.
查看答案
(1)已知:如图1,在矩形ABCD中,AF=BE.求证:DE=CF;
(2)已知:如图2,⊙O的半径为3,弦AB的长为4.求sinA的值.

manfen5.com 满分网 查看答案
(1)解方程:manfen5.com 满分网
(2)解方程组:manfen5.com 满分网
查看答案
如图所示是某种型号的正六角螺母毛坯的三视图,则它的表面积为    cm2
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.