满分5 > 初中数学试题 >

点P为抛物线y=x2-2mx+m2(m为常数,m>0)上任一点,将抛物线绕顶点G...

点P为抛物线y=x2-2mx+m2(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A、B两点(点A在点B的上方),点Q为点P旋转后的对应点.
(1)当m=2,点P横坐标为4时,求Q点的坐标;
(2)设点Q(a,b),用含m、b的代数式表示a;
(3)如图,点Q在第一象限内,点D在x轴的正半轴上,点C为OD的中点,QO平分∠AQC,AQ=2QC,当QD=m时,求m的值.

manfen5.com 满分网
(1)首先根据m的值确定出原抛物线的解析式,进而可求得P、G的坐标,过P作PE⊥x轴于E,过Q作QF⊥x轴于F,根据旋转的性质知:△GQF≌△PGE,则QF=GE、PE=GF,可据此求得点Q的坐标. (2)已知了Q点坐标,即可得到QF、FG的长,仿照(1)的方法可求出点P的坐标,然后代入原抛物线的解析式中,可求得a、b、m的关系式. (3)延长QC到E,使得QC=CE,那么AQ=QE;由于OD、QE互相平分,即四边形OEDQ是平行四边形(或证△QCD≌△ECO),那么QD=OE=m,而AQ=QE,且QO平分∠AQC,易证得△AQO≌△EQO,则OA=OE=m,即A点坐标为(0,m),然后将点A的坐标代入(2)的关系式中,即可求得m的值. 【解析】 (1)当m=2时,y=(x-2)2, 则G(2,0), ∵点P的横坐标为4,且P在抛物线上, ∴将x=4代入抛物线解析式得:y=(4-2)2=4, ∴P(4,4),(1分) 如图,连接QG、PG,过点Q作QF⊥x轴于F,过点P作PE⊥x轴于E, 依题意,可得△GQF≌△PGE; 则FQ=EG=2,FG=EP=4, ∴FO=2. ∴Q(-2,2).(2分) (2)已知Q(a,b),则GE=QF=b,FG=m-a; 由(1)知:PE=FG=m-a,GE=QF=b,即P(m+b,m-a), 代入原抛物线的解析式中,得:m-a=(m+b)2-2m(m+b)+m2 m-a=m2+b2+2mb-2m2-2mb+m2 a=m-b2, 故用含m,b的代数式表示a:a=m-b2.(4分) (3)如图,延长QC到点E,使CE=CQ,连接OE; ∵C为OD中点, ∴OC=CD, ∵∠ECO=∠QCD, ∴△ECO≌△QCD, ∴OE=DQ=m;(5分) ∵AQ=2QC, ∴AQ=QE, ∵QO平分∠AQC, ∴∠1=∠2, ∴△AQO≌△EQO,(6分) ∴AO=EO=m, ∴A(0,m),(7分) ∵A(0,m)在新的函数图象上, ∴0=m-m2 ∴m1=1,m2=0(舍), ∴m=1.(8分)
复制答案
考点分析:
相关试题推荐
有六个学生分成甲、乙两组(每组三个人),分乘两辆出租车同时从学校出发去距学校60km的博物馆参观,10分钟后到达距离学校12km处有一辆汽车出现故障,接着正常行驶的一辆车先把第一批学生送到博物馆再回头接第二批学生,同时第二批学生步行12km后停下休息10分钟恰好与回头接他们的小汽车相遇,当第二批学生到达博物馆时,恰好已到原计划时间、设汽车载人和空载时的速度不变,学生步行速度不变,汽车离开学校的路程s(千米)与汽车行驶时间t(分钟)之间的函数关系如图,假设学生上下车时间忽略不计,
(1)原计划从学校出发到达博物馆的时间是______分钟;
(2)求汽车在回头接第二批学生途中的速度;
(3)假设学生在步行途中不休息且步行速度每分钟减小0.04km,汽车载人时和空载时速度不变,问能否经过合理的安排,使得学生从学校出发全部到达目的地的时间比原计划时间早10分钟?如果能,请简要说出方案,并通过计算说明;如果不能,简要说明理由.
manfen5.com 满分网
查看答案
已知:如图,⊙O为△ABC的外接圆,BC为⊙O的直径,作射线BF,使得BA平分∠CBF,过点A作AD⊥BF于点D.
(1)求证:DA为⊙O的切线;
(2)若BD=1,manfen5.com 满分网,求⊙O的半径.

manfen5.com 满分网 查看答案
如图,在航线L的两侧分别有观测点A和B,点A到航线L的距离为2km,点B位于点A北偏东60°方向且与A相距5km处.现有一艘轮船正沿该航线自西向东航行,在C点观测到点A位于南偏东54°方向,航行10分钟后,在D点观测到点B位于北偏东70°方向.
(1)求观测点B到航线L的距离;
(2)求该轮船航线的速度(结果精确到0.1km/h,参考数据:manfen5.com 满分网,sin54°=0.81  cos54°=0.59,tan54°=1.38,sin70°=0.94,cos70°=0.34,tan70°=2.75)
manfen5.com 满分网
查看答案
“知识改变命运,科技繁荣祖国”.我区中小学每年都要举办一届科技比赛.如图为我区某校2011年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图
(1)该校参加机器人、建模比赛的人数分别是______人和______人;
(2)该校参加科技比赛的总人数是______人,电子百拼所在扇形的圆心角的度数是______°,并把条形统计图补充完整;
(3)从全区中小学参加科技比赛选手中随机抽取80人,其中有32人获奖.今年我区中小学参加科技比赛人数共有2485人,请你估算今年参加科技比赛的获奖人数约是多少人?
manfen5.com 满分网
查看答案
如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形ABCD的边长为2,E是AD的中点,按CE将菱形ABCD剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.
(1)在下面的菱形斜网格中画出示意图;
manfen5.com 满分网
(2)判断所拼成的三种图形的面积(s)、周长(l)的大小关系(用“=”、“>”或“<”连接):
面积关系是______;周长关系是______
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.