可以设平行四边形ABCD的面积是S,根据等分点的定义利用平行四边形ABCD的面积减去四个角上的三角形的面积,就可表示出四边形A4B2C4D2的面积,从而得到两个四边形面积的关系,即可求解.
【解析】
设平行四边形ABCD的面积是S,设AB=5a,BC=3b.AB边上的高是3x,BC边上的高是5y.
则S=5a•3x=3b•5y.即ax=by=.
△AA4D2与△B2CC4全等,B2C=BC=b,B2C边上的高是•5y=4y.
则△AA4D2和△B2CC4的面积是2by=.
同理△D2C4D与△A4BB2的面积是.
则四边形A4B2C4D2的面积是S----=,即=1,
解得S=.
故选C.