如图,抛物线y=(x+1)
2+k与x轴相交于A、B两点,与y轴相交于点C(0,-3).
(1)求抛物线的对称轴及k值;
(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;
(3)点M是抛物线上一动点,且在第三象限,当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标;
(4)若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A、B、E、F为顶点的四边形为平行四边形?若存在,直接写出所有满足条件的点F的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
如图,Rt△ABC在平面直角坐标系中,BC在x轴上,B(-1,0)、A(0,2),AC⊥AB.
(1)求线段OC的长.
(2)点P从B点出发以每秒4个单位的速度沿x轴正半轴运动,点Q从A点出发沿线段AC以
个单位每秒速度向点C运动,当一点停止运动,另一点也随之停止,设△CPQ的面积为S,两点同时运动,运动的时间为t秒,求S与t之间关系式,并写出自变量取值范围.
(3)Q点沿射线AC按原速度运动,⊙G过A、B、Q三点,是否有这样的t值使点P在⊙G上?如果有求t值,如果没有说明理由.
查看答案
周六上午8:O0小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为x小时,小明离家的路程y(干米)与x(小时)之间的函数图象如图所示,
(1)小明去基地乘车的平均速度是______千米/小时,爸爸开车的平均速度应是______千米/小时;
(2)求线段CD所表示的函数关系式;
(3)问小明能否在12:0 0前回到家?若能,请说明理由;若不能,请算出12:00时他离家的路程.
查看答案
某电脑公司各种品牌、型号的电脑价格如下表,育才中学要从甲、乙两种品牌电脑中各选择一种型号的电脑.
| 甲 | 乙 |
型号 | A | B | C | D | E |
单价(元/台) | 6000 | 4000 | 2500 | 5000 | 2000 |
(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?
(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A型号,学校规定购买费用不能高于10万元,又不低于9.2万元,问购买A型号电脑可以是多少台?
查看答案
如图,四边形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD与EF的交点.
(1)求证:△BCF≌△DCE;
(2)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.
查看答案
振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人.
(1)他们一共调查了多少人?
(2)这组数据的众数、中位数各是多少?
(3)若该校共有1560名学生,估计全校学生捐款多少元?
查看答案